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Abstract. An overview is given of recent tests of the mode-coupling theory for the evolution
of structural relaxation in glass-forming liquids. Emphasis is put on comparisons between the
leading-order asymptotic formulae derived for the dynamics near glass transition singularities and
the results of neutron scattering, depolarized light scattering, impulsive stimulated light scattering
and dielectric-loss spectroscopy for conventional liquids. The tests based on photon-correlation
spectroscopy results for the glassy dynamics of colloids and the findings of molecular dynamics
simulations for model systems are also considered.

1. Introduction

The mode-coupling theory for the density-fluctuation dynamics of simple liquids was
developed originally in order to deal with the cage effect. This effect has been known of
for some time as the essential feature distinguishing the dynamics of a liquid from that of
a dense gas. It was discovered that the derived equations of motion, which deal with a
self-consistent treatment of density-fluctuation propagation and current relaxations, lead to a
bifurcation of the long-time limit of the density correlators. This bifurcation provided a model
for an ideal liquid-to-glass transition. The identification of this glass transition singularity
opened up the possibility for an analytic solution of the complicated non-linear equations
by means of asymptotic expansions using the distance from the transition point as a small
parameter. It turned out that the bifurcation is connected with a novel dynamical scenario.
A set of predictions were produced concerning, e.g., fractal decay laws and unconventional
dynamical scaling. The crucial point was the suggestion that the evolution of glassy dynamics
manifests itself in a dynamical window of several-orders-of-magnitude variations of time
t or frequencyω adjacent to the short-time or high-frequency regime, respectively, where
conventional condensed-matter dynamics is observed. Thus the mode-coupling theory for the
evolution of glassy dynamics (MCT) provided motivation for studies of the dynamical regime
indicated.

Neutron spin–echo spectroscopy demonstrated [1] that a molten mixed salt does indeed
exhibit the so-calledα-relaxation process at temperatures far above the glass transition on the
ns timescale, i.e. on a timescale which is several orders of magnitude smaller than the one for
which it was analysed by the pioneers of glass transition research. It was found in addition
that the scattering cross sections for neutrons [2] and light [3] exhibit within the GHz window
a so-called critical spectrum, i.e. the predicted self-similar spectral enhancement above the
white-noise background. Incoherent and coherent neutron scattering spectroscopy of a van
der Waals liquid detected an anomaly for the so-called non-ergodicity parameters and this was
used to show that the evolution of glassy dynamics is connected with a crossover temperature
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Tc, which is located about 47 K above the calorimetric glass transition temperatureTg and
about 39 K below the melting temperatureTm [4, 5]. Molecular dynamics simulations [6–8]
corroborated these findings and provided evidence for the factorization of spatial and temporal
correlations for density fluctuations in an intermediate-time window, a property which is not
found for normal-liquid dynamics nor for conventional phase transition phenomena. A number
of polymers were identified whose dielectric-loss spectra could be interpreted with the MCT
scaling laws [9], a finding supporting the predicted universality features. It was discovered
that a slightly polydisperse colloid of hard spheres exhibits an equilibrium transition at some
critical density from an ergodic liquid to a non-ergodic solid [10], thereby demonstrating that
complexity of the system is irrelevant for the existence of a glass transition.

The work described in the preceding paragraph has been reviewed in reference [11], and
therefore this material will not be considered further in the following. During the past seven
years an impressive increase in the amount of research on the evolution of glassy dynamics has
occurred. Neutron scattering studies have been refined and extended to additional systems.
The dynamical window of molecular dynamics studies was extended by more than an order
of magnitude and the data statistics was improved. The window accessible to impulsive
stimulated light scattering spectroscopy was enlarged with the result that the elastic modulus
could be determined for frequencies up to 1 GHz. Studies of colloid dynamics were extended,
so the glass transition for the hard-sphere system is now completely documented as far as
the coherent density-fluctuation dynamics is concerned. A breakthrough was achieved by
the application of the tandem Fabry–Pérot spectrometer. It allows the study of the evolution
of structural relaxation within a four-orders-of-magnitude dynamical window extending from
the Raman band for conventional condensed-matter dynamics down to 0.2 GHz. Similarly, it
became possible very recently to explore by dielectric-loss spectroscopy the window extending
from the far-infrared regime down to the low-frequency regime, which has been studied for a
century. The results of this recent research have also been used to test MCT, and the outcome
of this work will be reviewed in the following.

The essence of the MCT scenario for the evolution of structural relaxation is provided
by asymptotic formulae derived for states near the glass transition singularities. The first
problem for an assessment of MCT is therefore to find out whether or not the general
theoretical results properly reflect the qualitative features of the experiments and the molecular
dynamics simulations. The most objective description of such analyses can be communicated
by quantitative comparisons of the data with the available formulae for the relevant asymptotic
results. Hence I will proceed in this review by first citing some of the theoretical predictions,
then explaining two figures from reports by authors who aimed to test the result under
discussion, and finally I will consider related work obtained by other methods or for other
systems. In reference [11] a summary of the basic MCT results can be found together with a
list of the original publications on this subject, and therefore citations of papers dealing with
theory will be omitted in the following.

2. The glass transition singularity

2.1. The form-factor anomaly

Within MCT the origin of the glassy relaxation is a fold bifurcation of the long-time limitfq
of the normalized density correlatorφq(t) = 〈ρEq(t)∗ρEq〉/〈|ρEq |2〉, q = |Eq|: φq(t →∞) = fq .
This limit is zero for the liquid but positive for ideal glass states. It is called the glass form
factor or the non-ergodicity parameter. It behaves discontinuously if a control parameter such
as the packing fractionϕ or temperatureT passes some critical valueϕc or Tc respectively.
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Thusfq exhibits a singularity as a function of the distanceε = (ϕ−ϕc)/ϕc orε = (Tc−T )/Tc
for ε = 0. A limit fq > 0 is the Debye–Waller factor of the arrested disordered structure,
since the normalized density-fluctuation spectrum reads

φ′′q (ω) = πfqδ(ω) + regular terms.

In reality there are ergodicity-restoring processes for all choices of control parameters. They
are referred to as hopping processes, and they are studied within the extended MCT which
will not be discussed in detail in this article. Forε > 0 the hopping processes change the
ideal elastic spikeπfqδ(ω) to a quasi-elastic peak. Forε < 0 even the basic version of MCT
predicts a quasi-elastic peak for the density spectrumφ′′q (ω), whose width approaches zero in
the limit ε → 0. The above-mentioned spectral peaks are theα-peaks of the MCT. The areas
fq of these peaks can be considered as effective Debye–Waller factors. Forfq , which can be
measured by detecting the low-frequency spectrumφ′′q (ω) or by determining the plateau of the
φq(t)-versus-logt curve, the prediction in the limit of vanishing hopping processes reads

fq − f cq =
{
hq
√
σ/(1− λ) +Oq(σ) σ > 0 (1a)

O ′q(σ ) σ < 0. (1b)

Hereσ = Cε is the separation parameter, 1/2 6 λ < 1 is the exponent parameter,f cq > 0 is
called the critical form factor, the critical non-ergodicity parameter or the plateau, andhq > 0
is called the critical amplitude. The introduction ofC andλ in the results is a matter of
convention, done in order to unify equation (1a) with formulae to be quoted in section 4.
Equations (1) can be generalized to other normalized correlatorsφA(t) = 〈A∗(t)A〉/〈|A|2〉
referring to variablesA which couple to density fluctuations. One has to replacef cq andhq
by theA-specific amplitudesf cA andhA respectively, where 0< f cA < 1 andhA > 0. Also
the correctionsOA(σ) andO ′A(σ ) depend on the variableA, i.e. the ranges of validity of the
specified leading-order results,fA − f cA ∝

√
ε for ε > 0 andfA = f cA for ε < 0, depend on

the variable under consideration.
For representative valuesq the predicted

√
ε anomaly relates to effects of the order of 10%.

Typical experimental uncertainties render it difficult to identify the effect and to distinguish it
from, e.g., a kink in thefA-versus-T graph. Because of the change of the ideal spike to a quasi-
elastic peak there is the additional problem of separating the peak from other contributions to
the spectrum. Missing parts may introduce an artificial drop of thefA-versus-T curve which

Figure 1. Effective Debye–Waller factorsfQ of OTP as functions of the temperatureT measured
for various wave-vectorsQ by coherent neutron scattering spectroscopy. The curves indicate fits
to equations (1) leading to a critical temperatureTc ≈ 290 K. Based on figure 6 of reference [15].
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overwhelms the searched-for cusp [12–14]. Even though the anomaly, equation (1a), refers to
a T < Tc property, one should therefore analyse theα-peak area also forT > Tc in order to
provide the base-line, equation (1b), for the anomaly.

Extensive neutron scattering studies for the van der Waals system orthoterphenyl (OTP,
Tg ≈ 243 K,Tm = 329 K) identified the square-root anomaly for the coherent and incoherent
scattering cross sections withTc ≈ 290 K [5]. Figure 1 reproduces recent results forfq
obtained with neutron spin–echo and backward-scattering spectrometers [15]. The data relate
to wave-vectors of the order of 1 Å−1, i.e. they test fluctuations with wavelengths of the order
of the interparticle distances.

Figure 2. The effective Debye–Waller factor for wave-vectorq = 0 of CKN as a function of
the temperatureT determined by impulsive stimulated light scattering spectroscopy. The results
for fq=0 are calculated from the generalized hydrodynamics formula for the scattering law for
wave-vectorsq. The inset shows results measured forq = 0.235µm−1; the main part shows the
combined results for all wave-vectorsq studied. The curves are fits to equations (1) yielding a
crossover temperatureTc = 378± 2 K. Reproduced from reference [16].

The elastic modulus can be measured by impulsive stimulated scattering of light, thereby
testing density fluctuations for macroscopic wavelengths. The anomaly for the modulus,
measured by scattering from fluctuations of different wave-vectorsq, can be converted to
one offq=0. Figure 2 shows results obtained by this technique for the molten mixed salt
0.4 Ca(NO3)2 0.6 KNO3 (CKN, Tg ≈ 333 K, Tm ≈ 483 K) [16]. These measurements
identify the critical temperatureTc = 378± 2 K. Notice that the anomalous Debye–Waller-
factor drop, documented in figure 2 for the interval betweenTc − 15 K andTc, is only 13%.
A small anomaly near the citedTc has also been detected for an effective mean squared
particle displacement of CKN by means of coherent neutron scattering spectroscopy [17].
The dielectric modulus of CKN exhibits a drop of about 20% consistent with the result of
figure 2 [18].

For the van der Waals liquid Salol(Tg ≈ 218 K,Tm = 315 K) the
√
ε anomaly was detected

by incoherent neutron scattering spectroscopy [19] yieldingTc = 263± 7 K. This value of
the critical temperature is consistent with the result obtained by impulsive stimulated light
scattering spectroscopy which identified a

√
ε anomaly of about 30% [20]. The same technique
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was used also to identify the cusp anomaly forn-butylbenzene withTc ≈ 150 K [21]. Neutron
scattering spectroscopy identified anfq-anomaly for the van der Waals liquid propylene
carbonate (PC,Tg ≈ 160 K,Tm = 218 K) indicatingTc = 190± 20 K [22].

Density correlatorsφq(t) have been determined for a set of wave-vectors by molecular
dynamics studies for a binary mixture of Lennard-Jones particles A50B50 [23] and also for a
three-site model for OTP [24]. The structural-relaxation parts have been fitted to the stretched
exponentialfq exp−(t/τq)βq in order to determine the effective Debye–Waller factorfq . The
results have been interpreted consistently with equation (1) and allowed the authors to estimate
critical temperaturesTc. It was checked for the OTP model that the pair correlation functions,
the structure factors, the density and the energy do not show any anomaly forT nearTc. The
expected typical quenching anomalies were shown to occur at a temperatureTg belowTc [25].
Nevertheless, some reservation concerning the reportedfq is needed, since it is unclear whether
theT 6 Tc results in references [23,24] are representative for properly equilibrated samples.

2.2. The position of the singularity

For some systems the MCT equations have been solved completely, thereby producing
numerical values forf cq , hq, λ, C from first principles. The simplest example is the hard-
sphere system (HSS). It can be prepared for experimental studies as a colloidal suspension,
and its density correlatorsφq(t), in particular the long-time limitsfq , can be determined by
photon-correlation spectroscopy [26]. The predicted critical packing fractionϕMCT

c = 0.525
is somewhat smaller than the value measured for the transition from an ergodic liquid to a
non-ergodic solid,ϕexp

c = 0.578± 0.004 [27].
Molecular dynamics studies for a carefully equilibrated binary Lennard-Jones mixture

A80B20 (LJM) have been used for an extensive documentation of glassy dynamics and for
tests of MCT [28–30]. For the states studied the structure is ruled by the 1/r12 repulsive
part of the interaction potential and therefore the relevant control parameter for this system is
0 ∝ ϕ/(kBT )1/4. For this system the MCT results for the numbers in equation (1) have been

Figure 3. The critical Debye–Waller factorf cq = fc(q) (open symbols) and critical amplitude
hq = h(q) (dots) as functions of the wave-vectorq determined for a hard-sphere-colloidal glass
by photon-correlation spectroscopy in comparison with the MCT predictions (curves) for the HSS.
R denotes the particle radius and the main peak of the structure factor is located nearqR = 3.5
Reproduced from reference [32].
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evaluated in reference [31]. It was found again that MCT overestimates the trend to structural
arrest and the discrepancy between calculated and measured critical couplings0c is about
20%. This error transforms to a large discrepancy for the dimensionless critical temperatures
T MCT
c = 0.922 versusT exp

c = 0.435. It is a notoriously difficult problem to accurately
calculate from first principles a transition temperature for a condensed-matter system, and
MCT calculations do not provide exceptions.

2.3. The glass form factors

The critical Debye–Waller factorf cq and the critical amplitudehq have been measured for the
HSS by analysing the long-time limitfq of the density correlators for the above-mentioned
colloid glass. Figure 3 reproduces some results [32]. Notice that there is no fit parameter
involved in the comparison between the data and the MCT prediction forf cq . The data analysis
in reference [32] in addition confirms the

√
ε decrease offq upon decreasingϕ towardsϕc.

The critical form factorf cq can also be deduced from liquid-state data by studyingα-relaxation
or β-relaxation scaling, as will be discussed below. Both methods have been applied in hard-
sphere-colloid studies [33], corroborating and extending figure 3.

Unfortunately, molecular dynamics studies for the equilibrated states withT 6 Tc have
so far not been published. In non-equilibrated states, aging effects lead to a dynamics which
is different from the one studied in MCT, and typical MCT features may be masked [34, 35].
For the cited LJM the symmetric two-by-two matrix of critical Debye–Waller factorsf cq (the
long-time limits of the normalized coherent scattering functionsφq(t)) and the two critical
Lamb–Mössbauer factorsf scq (the long-time limits of the incoherent scattering functions
φsq(t)) have been determined via equation (1b) from α-process studies of the equilibrated
liquid. Figure 4 shows the findings for anf cq and anf scq [36] in comparison with the MCT
predictions from reference [31]. I will discuss below in connection with figure 15 how to
determine from simulation data the Fourier back-transformationH(r) of Sqhq . Thereby one
can obtain information equivalent to the knowledge of the critical amplitudehq . It is shown
in reference [31] that MCT accounts reasonably for theH(r) data of the LJM.

Figure 4. The critical form factorf cq (circles) and critical form factor for tagged-particle motion
f scq (squares) as functions of the wave-vectorq deduced from fits of the von Schweidler law to
theα-relaxation decay curves obtained by molecular dynamics simulations for a LJM. The broken
lines are guides to the eye connecting the data points. The full curves are MCT results obtained
for this system in reference [31]. The unit of length is chosen such that the structure factor peak is
located near 7.3. The open symbols are results of simulations for a Newtonian dynamics and the
filled ones for a stochastic dynamics. Reproduced from reference [36].
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3. The two time fractals

The stretching ofφq(t)-versus-logt curves over large time windows or of the corresponding
χ ′′q (ω)-versus-logω curves for the susceptibility spectra over huge frequency intervals is an
outstanding feature of glassy dynamics. The MCT bifurcation dynamics exhibits this feature
and the underlying mathematical essence of it is the appearance of two time fractals, i.e. power
laws specified by non-integer exponents for the variation of the correlatorsφq(t) with time t .
One fractal deals with the decay following the transient towards the plateauf cq and the other
with the decay of the liquid correlators below this plateau.

Figure 5. Density correlatorsφq(t) = f (q, τ ) (upper panel) and rescaled correlatorsφ̂q (t) =
(φq(t) − f cq )/hq (lower panel) as functions of log10(t), t = τ , measured by photon-correlation
spectroscopy for a hard-sphere-colloidal glass. The main peak of the structure factorSq is located
nearqR = 3.5, whereR denotes the particle radius. The upper panel exhibits as curves two
exponential decay functions matched to the short-time diffusional asymptote. The full curve in the
lower panel is the leading-order MCT result for theβ-regime

√|σ |g+(t/tσ ); the scales|σ | andtσ
are fitted and the master functiong+ is the MCT result for the HSS. Reproduced from reference [32].
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3.1. The critical decay law

The long-time decay process of the correlators at the critical point, called critical decay, is
specified by an anomalous exponenta, 0< a 6 amax= 0.395. . ., called the critical exponent.
It is determined by the system-dependent exponent parameterλ as the solution of the equation
0(1− a)2/0(1− 2a) = λ:

φq(t̂ t0)− f cq = hq t̂−a +Oa
q (t̂
−2a). (2a)

Heref cq andhq are the critical Debye–Waller factor and the critical amplitude respectively
from equation (1a). Furthermore there enters a timescalet0, determined by the transient,
and t̂ = t/t0 denotes a rescaled time. Correlators for other variablesA which couple to the
densities, such as the dipole moment, obey the same law; onlyf cq , hq have to be replaced by
theA-specific amplitudesf cA, hA mentioned above, buta andt0 remain unchanged.

The upper panel of figure 5 [32] reproduces density correlators for the cited hard-sphere-
colloid glass for a packing fraction close to the critical one. Two exponential curves have
been added to match the short-time diffusion-law asymptote. They indicate the normal-liquid
dynamics. The data exhibit a stretched decay towards the long-time limitfq > f cq for times
outside the transient regime, i.e. fort > 103 µs. ForqR = 2.77 the anomalous dynamics
relates to the decrease ofφq(t) from 0.95 to about 0.65, and this decay is stretched over more
than three orders of magnitude of time increase, before the long-time limit is reached within
the error bars at about 106.5 µs. The decay from 0.95 to 0.85 relates to the crossover from the
transient to structural relaxation. The correlators follow the leading-order critical decay law

φ̂q(t) = (φq(t)− f cq )/hq ∝ 1/t̂a

only for a time interval of half a decade before they embark on the crossover fort > 105 µs
to the limit fq . So, the data shown demonstrate an anomalous decay process as predicted by
MCT.

The critical law is equivalent to an enhancement of the fluctuation spectrum forωt0 � 1
above a frequency-independent white-noise background according to the power lawφ′′(ω) ∝
1/ω1−a. This fluctuation spectrum corresponds to a sublinear susceptibility spectrumχ ′′(ω) ∝
(ωt0)

a. Even thoughχ ′′(ω) decreases with decreasingω, it is enhanced above a regular
susceptibility spectrum,χ ′′(ω) ∝ ω, caused by a white-noise backgroundφ′′(ω) = constant.
Figure 6 [37] demonstrates this behaviour for the 361 K dielectric-loss spectrum of the molten
mixed salt 0.4 Ca(NO3)2 0.6 RbNO3 (CRN). The data follow the power law for an exponent
a = 0.20 over a three-decade window. A regular-background spectrum is indicated in the
figure by the dotted line labelleds = 1. Forω/2π = ν = 1 GHz the measured spectrum is
enhanced by more than a factor of 100 relative to the estimated regular contribution.

There are several reasons for which a demonstration of the puret̂−a-law is the exception
rather than the rule. To identify the power law, the timet = t0t̂ has to be chosen so large, or
the frequency so small, that the correction term

Oa
A(t̂
−2a) = ĥAt̂−2a + O(t̂−3a) (2b)

can be neglected. Moreover one needs to chooset large because of the requirement that all
transient effects must have disappeared. Not only can oscillations mask the critical law, but
also they can produce crossover spectraχ ′′(ω) ∝ ωaeff , where the fit exponentaeff is unrelated
to a. On the other hand, one cannot chooset or 1/ω arbitrarily large. First there is the
signal-to-noise problem for the measurement of the small differenceφq(t)−f cq or of the small
intensityχ ′′(ω) relative to the large nearbyα-peak. Second, forσ < 0 there is the crossover to
theα-process for large times or small frequencies as demonstrated for theT = 381 K results
in figure 6. Similarly, forσ > 0 there is the crossover from the 1/t̂a decay to arrest at the
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Figure 6. A double-logarithmic representation of the dielectric-loss spectrumε′′ of CRN as a
function of frequencyν = ω/2π for four temperatures. The dashed straight line shows the
power lawε′′(ω) ∝ ωa , a = 0.20, and the dotted line shows an estimate of a white-noise-
background spectrumε′′(ω) ∝ ωs , s = 1. The full curves show theβ-relaxation scaling law
ε′′ ∝ √|σ |χ̂−(ωtσ ) with scales

√|σ | and tσ fitted for each temperature. Here the interpolation
formula χ̂−(ω̂) ∝ [bω̂a + aω̂−b] is used wherea = 0.20 andb = 0.28 are the exponents
corresponding to the exponent parameterλ = 0.91. Reproduced from reference [37].

long-time limitfq , as demonstrated in figure 5. The description of these crossovers from the
critical decay to theα-process or to arrest respectively is a major subject of MCT, and the
critical law manifests itself most clearly in this crossover feature. This is demonstrated for
σ > 0 by the full curve in the lower panel of figure 5 and by the full curves in figure 6 as will
be discussed in section 4.

3.2. The von Schweidler law

For the correlator decay of the liquid from the plateauf cq towards zero, i.e. for the start of the
α-process, another power law is obtained, called von Schweidler’s law:

φq(t̃τ )− f cq = −hq t̃b +Ob
q (t̃

2b). (3a)

Hereτ is the control-parameter-sensitiveα-process timescale andt̃ = t/τ denotes a rescaled
time. The anomalous exponentb is also determined by the exponent parameterλ via
0(1+b)2/0(1+2b) = λ, 0< b 6 1. The amplitudesfq, hq are the same as in equations (1a),
(2a). The correction amplitudẽhq in the expression

Ob
q (t̃

2b) = h̃q t̃ 2b + O(t̃ 3b) (3b)

is related to the corresponding amplitude in equation (2b): h̃q = ĥq + 1 · hq . Here1 is a
q-independent constant. The equations are generalized to other correlatorsφA(t) as before:
one has to replacef cq , hq, h̃q byf cA, hA, h̃A, respectively, but the scaleτ and von Schweidler’s
exponentb remain unchanged.

Molecular dynamics simulations have been performed recently for a liquid of linear
molecules, where the interaction was modelled by a two-site Lennard-Jones potential. The
intention was to examine structural relaxation for the translational and rotational degrees of
freedom and to test the applicability of the universal MCT results [38–40]. Figure 7 reproduces
results of this work for the centre-of-mass density-fluctuation correlator for a tagged molecule
for various temperatures as a function of the rescaled timet/τ . The smooth full curve exhibits
a fit to the data of equations (3), usingf cq , hq , andh̃q as adjustable parameters. The fit with
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Figure 7. Tagged-particle density correlatorsφsq for a wave-vectorq at the position of the main
peak of the structure factor as functions of the rescaled timest/τ . The data were obtained by
molecular dynamics simulations for a liquid of diatomic molecules for dimensionless temperatures
T = 0.477, 0.489, 0.500, 0.520, 0.549, 0.588, 0.632, 0.70, 5.0 (from left to right). The scale
τ = τ sq is chosen for eachT such that the long-time parts of the correlators coincide. The smooth

full curve is a fit to the von Schweidler asymptoteφq(t) = f cq − hq(t/τ )b + h̃q (t/τ )2b, b = 0.54.

The dashed curve is a fit to the stretched exponentialφq(t) = 0.7 exp−(t/τ )0.78. Reproduced
from reference [39].

Figure 8. Density correlatorsφq(t) = F(Q, t) for a wave-vectorQ = 18 nm−1 near the position
of the structure factor peakQ = QFSDPas functions of the rescaled timet/τ obtained by molecular
dynamics simulations for a model of water. Theα-relaxation timeτ is defined byφq(τ) = 1/e.
The temperatures are from left to right 207, 210, 215, 225, 238, 258, 285 K. The dashed–dotted
curve is the MCT leading-orderβ-relaxation resultf cq + hqcσ g−(t/tσ ); the master functiong− is
evaluated for the exponent parameterλ = 0.79 yielding a von Schweidler exponentb = 0.50, and
f cq , hqcσ , tσ are adjusted such that the data for 207 K are fitted for intermediate times. The inset
is a rectification diagram where von Schweidler’s law appears as the dashed–dotted straight line;
it accounts for the 207 K data, which are shown as the full curve, for a dynamical window larger
than two decades. Reproduced from reference [41].

b = 0.54 describes the decay from 0.75 to 0.25 perfectly. A test of equation (3a) is more
suggestive and independent of the fit quantityf cq , if the correlator is rectified, i.e., if it is
plotted as a function oftb [28]. The inset of figure 8 shows such a plot withb = 0.50 for
a density correlator obtained by molecular dynamics simulations for a model of water [41].
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This result is one example of a series of findings [41–46] indicating that the slow dynamics
of supercooled water is caused by a glass transition singularity atTc around−50 ◦C. The
quoted simulations were done for a rigid-point-charge model for the water molecules. The
model reproduces the major features of the equation of state qualitatively but not quantitatively.
Therefore one has to be cautious when one reaches conclusions on the properties of real water
on the basis of simulation results.

From the analysis of depolarized light scattering spectra of Salol, measured within the
GHz window, a von Schweidler exponentb = 0.64±0.08 was determined [47]. This value is
corroborated by the resultb = 0.66± 0.06 obtained by fits of the von Schweidler law to the
dynamic susceptibility curvesχ(t) = −dφ(t)/dt measured for Salol within the ps window in
time-resolved optical Kerr-effect studies [48]. The high-frequencyα-peak wing measured for
the acoustic modulus of glassy LiCl in H2O by impulsive stimulated light scattering could be
fitted well over a window larger than three decades by von Schweidler’s law with the value
b = 0.28 [49]. The quoted examples confirm the MCT prediction that the anomalous exponent
b is not universal but system specific.

Von Schweidler’s law is a subtle asymptotic result of MCT and its experimental testing is
complicated by the standard stumbling block: one does nota priori know its range of validity.
One must not chooset = t̃ τ too small, since for decreasing timesφ(t) increases abovef cq
and merges with the critical decay law. Including erroneously such crossover parts into a fit
to equation (3a) would lead to an underestimation ofb and an overestimation off cq . On the
other hand, if̃t is too large, the correction term from equation (3b) takes over. The near at hand
fit criterion ‘the larger the fit interval the better’ has no justification. There is the danger that
parts of the correction term are absorbed in the leadinghq t̃

b-term by choosing an incorrect fit
exponentb or incorrect fit amplitudesf cq , hq . This might lead to effective exponents depending
on the wave-vector or, more generally, on the probing variableA. Suppose a whole set of
correlators is available. Then one can use equations (3a), (3b) together and optimize the fit for
all correlators simultaneously by varyinghq andh̃q , but constrainingb to a common number
for all fit functions. The efficiency of this procedure, using density and tagged-particle-density
correlators for a large set of wave-vectorsq, was demonstrated for the analysis of the simulation
results for water [44, 45]. The valueb = 0.50, which was cited in connection with figure 8,
resulted from such extensive data analysis. Similarly, it was shown that the correlators for
translational as well as rotational variables for the model liquid of linear molecules could be
interpreted with a common valueb = 0.54± 0.05, i.e.λ = 0.76± 0.03. The exception to
this demonstration of von Schweidler’s law are all correlators dealing with rotation variables
referring to the angular momentum index` = 1 [39, 40]. It seems that the molecule’s dipole
dynamics for the specified model is coupled so weakly to that of the density fluctuations that
the asymptotic laws are not valid for the value ofT − Tc studied.

4. Dynamics within the first-scaling-law regime

4.1. β-relaxation scaling

The dynamics in a window whereδφq(t) = φq(t)− f cq is small is referred to asβ-relaxation
and there one finds

δφq(t) = hqG(t) +Oq(|σ |,
√
|σ |G(t),G(t)2).

The result can be generalized to correlators for other variablesA as discussed above, where
A-specific amplitudesf cA andhA enter. Thus the leading-order result reads

φA(t)− f cA = hAG(t). (4a)
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Figure 9. Double-logarithmic plots of the susceptibility spectraχ ′′(ω)as functions of the frequency
ω/2π measured by depolarized light scattering for CKN. The top panel shows the results for the
temperatures (from top to bottom) 195, 180, 170, 160, 150, 140, 130, 120, and 110◦C. The full
curves are the approximations to the master spectraχ̂−(ω̂) ∝ [bω̂a + aω̂−b] translated such that
the spectra are matched near the minimum. The anomalous exponentsa = 0.27 andb = 0.46
correspond to the exponent parameterλ = 0.81. The bottom panel exhibits the spectra translated
such that the minimum positionsωmin and minimum intensitiesχ ′′min coincide. The full curves are
the master spectra forλ = 0.86, 0.81, and 0.74. Reproduced from reference [50].

This formula is called the factorization theorem. It is equivalent to the formula for the
susceptibility spectrum

χ ′′A(ω) = hAχ ′′(ω). (4b)

Hereχ ′′(ω) = ωG′′(ω) with G′′(ω) denoting the Fourier-cosine transform ofG(t). The
functionG, called theβ-correlator, depends ont/t0 andσ , where the timescalet0 is the one
from equations (2), andσ is the separation parameter from equations (1). The power law
G(t) = (t0/t)a holds forσ = 0, so equation (2a) is reproduced, and forσ 6= 0 one gets

G(t) = cσ g±(t/tσ ) σ ≷ 0. (5a)
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This is equivalent to the corresponding scaling law for the susceptibility spectrum:χ ′′(ω) =
0(1− a) sin(πa/2)(ωt0)a for σ = 0 and

χ ′′(ω) = cσ χ̂±(ωtσ ) σ ≷ 0 (5b)

with χ̂±(ω̂) = ω̂ĝ′′±(ω̂) and ĝ′′±(ω̂) denoting the Fourier-cosine transform ofg±(t̂ ). The
control-parameter-independent master functionsg±(t̂ ) andχ̂±(ω̂) are determined solely by the
exponent parameterλ. The sensitive dependence ofφA(t) on control parameters is described
by the two scalescσ andtσ , whoseσ -dependence will be discussed below.

Theβ-relaxation scaling is tested most conveniently by studying logχ ′′(ω)-versus-logω
plots. According to equations (4b), (5b) the spectral shape is given by the logχ̂±(ω̂)-versus-
log ω̂ graph, and spectra for different control parameters are related by mere translations of
this curve. Figure 9 demonstrates this law for depolarized light scattering spectra measured for
CKN for T > Tc; the data combine Raman spectrometer and tandem Fabry–Pérot spectrometer
results. To obtain relaxation spectra which are not disturbed by hydrodynamic shear excitations
the measurements were done for backward scattering. This experiment was the first which
displayed the evolution of structural-relaxation spectra within the GHz window upon cooling
a glass-forming liquid [50]. The top panel shows also theλ = 0.81 master function̂χ−,
translated for eachT such that it interpolates the spectral minima. The figure demonstrates
that the theoretical̂χ− accounts for the 120◦C data within a window of nearly three orders
of magnitude. The fits start to be valid for frequencies just below the microscopic-excitation
band due to oscillations which extends down to about 0.4 THz. The bottom panel shows that
a translation of the spectra onto the master curve forλ = 0.81 is possible within a window of
rescaled frequenciesω/ωmin which is larger for smaller|T − Tc|. Other values forλ differing
by up to±0.05 could be tolerated for an alternative fit. The interpretation of the light scattering
spectra was corroborated by the one given for the dielectric function [37]. The loss spectra
of CKN exhibit a minimum forT 6 144 ◦C. The real and imaginary parts of the dielectric
function for frequencies below 315 GHz were described by the scaling law and fitted with the
master functions forλ = 0.76. ForT = 106◦C the fit describes the spectrum for a four-decade
frequency window.

Figure 10 shows a test of the scaling law in the time domain. The data refer to density
correlators measured with photon-correlation spectroscopy for various packing fractionsϕ for
colloidal suspensions of polysterene-micronetwork spheres [51]. The full curves exhibit the
formulae (4a), (5a) for fA = 0.89, λ = 0.88. For eachϕ the two scalescσhA andtσ were fitted.
These fits of the scales account for the observed strong variation of the dynamics, reflected by
an increase of the timeτ , whereφA(τ) = 0.5, of over more than four orders of magnitude.
The master functiong−(t̂ ) describes the decay of the correlator between 0.95 and 0.50, which
for sample E extends over the huge time window of about seven orders of magnitude.

The most extensive test of theβ-scaling predictions was carried out in the work on
hard-sphere colloids [27, 32, 33]. For seven representative wave-vectorsq the functions
φ̂q(t) = (φq(t) − f cq )/hq were shown to be given bycσ g±(t/tσ ) for ϕ > ϕc andϕ < ϕc
respectively within the appropriate window, and for master functionsg± referring to the value
λ = 0.77 predicted for the HSS from first-principles calculations. The evaluation of thisλ

is based on the Verlet–Weiss approximation for the structure factor. It was checked that the
largest change ofλ, which might be tolerated for an alternative data analysis, is±0.05 [33].
The lower panel of figure 5 reproduces an example of this work. The full curve exhibits the
scaling-law resultcσ g+(t/tσ ) for fitted values for the scalescσ , tσ . It describes the data for
φ̂q(t) of the glass for a time interval of 2.5 decades fort > 105 µs.

The evolution of the enhanced susceptibility minimum on cooling was measured also for
Salol by depolarized light scattering spectroscopy. A description by theβ-relaxation scaling
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Figure 10. Density correlatorsφq(t) = f (Q, τ) measured as functions of timet = τ by photon-
correlation spectroscopy for five packing fractionsϕ for a colloidal suspension of polysterene-
micronetwork spheres. The full curves are the scaling-law resultφq(t) = f cq +hqcσ g−(t/tσ ) with
f cq = 0.89, a master functiong−(t̂ ) calculated for the exponent parameterλ = 0.88, and the two
scaleshqcσ , tσ fitted for each packing fraction. The dotted curve shows the transient dynamics
exp−(t/tmic) with tmic matched to the short-time asymptote. Reproduced from reference [51].

law was shown to be possible for frequencies below 0.1 THz and it led to the determination
of the exponent parameterλ = 0.70± 0.05, implying the anomalous exponentsa = 0.33
andb = 0.64 [47]. The spectral minimum of Salol was observed also by inelastic neutron
scattering [52]. For temperatures nearTc the minimum frequencyωmin was close to that
reported for the light scattering data. ForT − Tc > 20 K the minima became different,
indicating that the corrections to the leading-order result, equation (5b), are different for the
two probing variablesA studied in the two cited experiments. The existence of the anomalous
minimum between theα-peak and the far-infrared excitation band of Salol was shown for
T = 293 K by dielectric-loss spectroscopy [53], but the frequency window studied was too
small to allow for a quantitative analysis of the data.

Another van der Waals liquid, for which the depolarized light scattering spectra could be
described by theβ-scaling law for a frequency window of up to three orders of magnitude,
is PC; λ = 0.78 ± 0.05 was found [54]. This result was corroborated by dielectric-
loss spectroscopy [55]. A transient hole-burning experiment was performed to measure a
normalized decay curveφA(t), which describes the structural relaxation of the environment
of an excited dye molecule soluted in PC. The formulae (4a), (5a) describe the data for a
time window larger than two orders of magnitude, where the master functiong−(t̂ ) was used
for the sameλ = 0.78 [56]. In this work a scaling-law analysis is also demonstrated for
n-butylbenzene as solvent whereλ = 0.86 was identified.

Raman-scattering spectra for m-tricresyl phosphate also exhibited a susceptibility
minimum which is enhanced above an estimated white-noise background. It can be described
for the large temperature variation range of 95 K by the scaling-law expression, equation (5b),
with a master function̂χ− for λ = 0.65 [57]. It would be desirable to corroborate these results
by the analysis of spectra extending to lower frequencies.

The depolarized light scattering spectra of toluene(Tg ≈ 118 K,Tm = 178 K), measured
with a tandem Fabry–Ṕerot spectrometer for frequencies between 1 and 200 GHz and for
temperatures between 142 and 179 K, could be described well by the scaling law using a
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master function forλ = 0.73± 0.03. The same description was possible for spectra obtained
by incoherent neutron scattering for frequencies above 35 GHz [58].

The high-frequency wing of the susceptibility minimum can be analysed by asymptotic
MCT formulae only for such low frequencies that conventional condensed-matter vibrational
spectra can be neglected. It was demonstrated that by application of up to 7.6 kbar pressure to
isopropylbenzene(Tg ≈ 125 K,Tm = 177 K) the spectral contributions due to oscillations are
shifted to frequencies above 2 THz. Therefore a dynamical window of more than three orders
of magnitude could be used for the scaling-law analysis of the spectral minimum which was
measured by depolarized light scattering spectroscopy. The exponent parameterλ = 0.80 was
determined and the timescaletσ could be identified, where now the pressure was used as the
control parameter [59]. Unfortunately, the spectra could not be calibrated, so the scalehAcσ
could not be determined.

Inelastic neutron scattering spectroscopy yields the convolution of the fluctuation spectrum
φ′′q (ω) with the instrument’s resolution function. The latter can be eliminated in principle by
Fourier deconvolution and thereby one obtainsφq(t). By combining of results from two or
three spectrometers, structural-relaxation results for OTP could be obtained by incoherent [60]
and coherent [15] scattering for wave-vectorsq between 0.8 Å−1 and 2.0 Å−1. The data obey
the scaling lawφA − f cA = hAcσg−(t/tσ ) for a dynamical window larger than two orders of
magnitude [15,60,61] for the common exponent parameterλ = 0.77. It is difficult to estimate
the uncertainty ofλ, but±0.05 is perhaps not too pessimistic. Aβ-scaling analysis consistent
with the cited results has also been carried out using a pressure shift between 0.1 and 120 MPa
as control parameter [62]. Comparing the changes ofφq(t) due to variations with temperature
and with pressure, it was found that the relevant control parameter is the quantity0 ∝ ϕ/T 1/4.
One would expect such a result if the glassy dynamics was governed by the structure in a
regime, which is dominated by a 1/r12 repulsive potential. A comprehensive MCT analysis
of depolarized light scattering spectra, measured for the frequency window between 0.2 GHz
and 3 THz, has also been done for OTP [63]. The microscopic-excitation band due to the
transient dynamics extends down to about 0.2 THz for this system. Theβ-relaxation scaling
analysis works well withλ = 0.72 for temperatures between 340 K and 300 K and it describes
the 300 K spectrum around the susceptibility minimum for a window of 2.5 decades. The
above-mentioned computer experiments for an OTP model [24, 25] detected the crossover
from theα-relaxation process to the critical decay. This crossover could be described by
equation (4a) for an incoherent density-fluctuation correlator and reorientational correlators
for angular momentum index̀= 1 and` = 2. Since theβ-relaxation window identified is
rather small and since the data exhibit a considerable noise, there has to be some reservation
concerning the exponent parameter used,λ = 0.56, which is considerably smaller than the
one found for OTP in laboratory experiments [64].

The above-mentioned scaling laws are asymptotic results for the dynamics near the critical
point. This implies in particular that the interval for logt or logω, where the law is valid, has
to grow monotonically if|σ | decreases. Figures 9 and 10 show examples of this phenomenon
for decreasingT and increasingϕ respectively. A demonstration of this manifestation of
asymptotics is a crucial step in every analysis of the scaling-law predictions.

4.2. Theβ-relaxation scales

According to equation (5b) the intensityχ ′′min and positionωmin of the susceptibility spectrum
minimum are proportional tocσ and 1/tσ respectively. But signal-versus-noise problems make
it difficult to read these numbers off directly from the data plots, as is obvious from figure 9.
For the same reason it is difficult to deduce the scales directly fromφ(t)-versus-logt diagrams.
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This could be done in principle by using the equations

φq(t−) = f cq t− ∝ tσ f cq − φq(2t−) ∝ cσ .
It is more straightforward to obtain the scales as a by-product of the scaling-law verification.
For example, the vertical and horizontal translations studied in the double-logarithmic plots
in figure 9, needed to bring the master spectrum onto the data (top panel) or the data onto
the master spectrum (bottom panel), are logcσ and logtσ respectively, up to some additive
σ -independent constant. For the scales, power laws are predicted. The amplitude scale is the
elementary square root, characterizing a fold bifurcation:

cσ =
√
|σ |. (6)

The timescale, called the first critical timescale orβ-relaxation scale, is specified by an
anomalous exponent 1/2a larger than 1.27:

tσ = t0/|σ |1/2a. (7)

Figure 11. Squares of the spectral intensity of the susceptibility at the minimum,χ2
min, versus

the temperature, whereχmin is obtained from the scaling-law analysis of the CKN depolarized
light scattering data shown in figure 9. The line is a linear interpolation of the data points and its
intersection with the abscissa yields the estimate of the crossover temperatureTc ≈ 105◦C. Based
on figure 7 of reference [50].

The
√|ε| law for the amplitude scale is verified in figure 11 [50] for the light scattering

spectra of CKN discussed in figure 9 by showing that the(χ ′′min)
2-versus-T diagram is a

straight line:c2
σ ∝ |σ | ∝ (T − Tc). This finding is corroborated by the results obtained by

the analysis of dielectric-loss spectra of CKN, as shown by the top panel of figure 12 [37].
The intersections of the straight lines shown with the abscissa yield two estimates ofTc from
the high-temperature side of this crossover temperature. The values are consistent with the
one obtained from the low-temperature side by studying the Debye–Waller-factor anomaly,
discussed above in connection with figure 2. Let us note thatg+(t̂ → ∞) = 1/

√
1− λ,

so equations (4a), (5a) yield φA(t) − f cA = hAcσ /
√

1− λ for σ > 0. Therefore, the
√
σ

expression in equation (1a) is an implication of equation (6) forT < Tc.
The increase of the timescaleτ−β = 1/ωmin by nearly two orders of magnitude upon

cooling, deduced in reference [50] from the scaling-law analysis of the CKN light scattering
spectra in figure 9, is demonstrated by the squares in figure 13. The data are compatible with
the predicted power law, equation (7), which is shown as a full curve. It is more informative
to present the data as a rectification diagram, i.e. as a 1/(τ−β )

2a-versus-T plot. The validity
of equation (7) is equivalent to the observation that the data can be interpolated linearly. In



Recent tests of the mode-coupling theory for glassy dynamics A17

Figure 12. The temperature dependences ofε′′ 2min, ν2a
min, andν1/γ

max determined for the molten salts
CKN and CRN. Hereε′′min andνmin denote the height and frequency of the minimum of the dielectric-
loss spectra, andνmax is theα-peak frequency. The exponentsa andγ are the ones obtained from
the exponent parametersλ = 0.76 (CKN: a = 0.30, γ = 2.6) andλ = 0.91 (CRN:a = 0.20,
γ = 4.3) used for the master functions for the scaling-law analysis of the spectral minima. The
straight lines are linear interpolations of the data, and their intersection with the abscissa occurs
for CKN near 375 K and for CRN between 360 K and 375 K. Reproduced from reference [37].

Figure 13. The temperature dependences of the scaling timesτ−β and τ ′α for the β-relaxation
minimum and theα-peak maximum respectively of the depolarized light scattering spectra
measured for CKN. The scaleτ−β = 1/ωmin was obtained by the scaling-law analysis discussed
in connection with figure 9. The scaleτ ′α ∝ τ was obtained by verifying the second scaling law
of MCT, equation (8b). The full curves show the MCT power lawsτ−β ∝ tσ ∝ |T − Tc|−1/2a ,
τ ′α ∝ τ ∝ |T − Tc|−γ , with 1/2a = 1.8 andγ = 2.9, obtained from the exponent parameter
λ = 0.81. Based on figure 16 of reference [50].

addition one gets from the intersection of the straight-line interpolation with the abscissa a
value for the crossover temperatureTc, which thereby was found [50] to be consistent with
the other measurements mentioned above. The middle panel of figure 12 corroborates the
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findings, but now for dielectric-loss data for CKN [37]. Figure 12 also exhibits an analysis
of the scales for the dielectric-loss spectra of CRN, based on the scaling-law fit shown in
figure 6. Obviously, the results for CRN are less convincing than those reported for CKN in
reference [37]. It is also puzzling that the two systems CKN and CRN, which are chemically
so similar, should have such different exponent parameters as 0.76 and 0.91, respectively.

The scales deduced from the scaling-law analysis of depolarized light scattering spectra
of Salol followed the pattern discussed above and provided two determinations of the critical
temperatureTc = 256± 5 K [47], a value consistent with the results of neutron scattering
studies of the susceptibility minimum [52]. These determinations ofTc from theT > Tc
side led to somewhat smaller values than the determination from theT < Tc side via a
test of equation (1a) by neutron scattering(Tc ≈ 260 K) [19] and impulsive stimulated
light scattering(Tc = 266 K) [20] experiments. Scaling-law analysis of theβ-relaxation
of PC studied by light scattering [54], transient hole-burning [56], and dielectric-loss [55]
spectroscopy confirmed the validity of equations (6), (7) and provided a consistent estimate
Tc ≈ 180 K. The scales, which could be deduced from the above-cited studies of m-tricresyl
phosphate [57] and isopropylbenzene [59] followed the MCT predictions. The same holds
for the results found for then-butylbenzene analysis [56], which provided an estimate ofTc
which is about 10 K above the value derived from the Debye–Waller-factor anomaly [21]. The
comprehensive tests of MCT by the analysis of depolarized light scattering spectra of OTP
supported the predictions for the scalescσ , tσ for T > Tc and led toTc ≈ 290 K [63]. This
value is consistent with the above-mentioned analysis of the glass form-factor anomalies by
incoherent [4, 5] and coherent [5, 15] neutron scattering spectroscopy. The successful test of
theβ-relaxation scaling for incoherent [60, 61] and coherent [15] neutron scattering of OTP
led to scalescσ andtσ confirming equations (6), (7) and the citedTc. The scaling-law analysis
of the toluene spectra confirmed the predictions for the power-law variations of the scales and
provided the estimate of the critical temperatureTc = 143± 3 K [58].

Figure 14. The scaling timesτα = τ (open squares) obtained from the scaling-law analysis of
theα-process andτβ = tσ (filled symbols) obtained from theβ-relaxation scaling analysis for the
density correlators measured by dynamic light scattering spectroscopy for colloidal suspensions
of hard spheres as functions of the separation parameterσ = C(ϕ − ϕc)/ϕc. The full curves
exhibit the first critical timescaletσ = t0/|σ |1/2a, 1/2a = 1.7, and the dashed curve shows the
second critical timescaleτ = t0B1/b/|σ |γ , γ = 2.6, b = 0.53,B = 1.01, of the HSS. The open
triangles denote the timescalet0 from the transient dynamics used in the fits. Reproduced from
reference [33].



Recent tests of the mode-coupling theory for glassy dynamics A19

Theβ-scaling analysis for the hard-sphere-colloidal liquid(σ < 0) and the glass(σ > 0)
leads to scales confirming the MCT formulae [27, 32, 33]. This is demonstrated in figure 14
for the timescales by the comparison of the measured scaling times (full symbols) with the
predicted result, equation (7) with 1/2a = 1.7. Notice that MCT relates the master function
g+(t̂ ) with g−(t̂ ) in equation (5a). This was accounted for in the scaling-law analysis. The
fact that the data points in figure 14 indicate a symmetry of the cusp of the 1/tσ -versus-σ
curve without adjusting the constants of proportionality provides support for the MCT relation
between the slow bifurcation dynamics of the liquid and that of the glass.

The analysis of theβ-relaxation of the colloidal suspension of polysterene-micronetwork
spheres, discussed above in connection with figure 10 forϕ < ϕc, is summarized in reference
[65]; it shows full agreement with the MCT predictions. However, forϕ > ϕc MCT can
account for the data only for a time window of less than two decades, because in this material
there appears a new relaxation process of unknown origin for long times [66].

4.3. The factorization property

The factorization ofφA(t) − f cA into a time-and-control-parameter-independentA-specific
amplitudehA and a functionG(t) of time t and separation parameterσ , which is shared by
all probing variablesA, equation (4a), has surprising implications. If applied to the particle
densityn(Er, t) as a function of the position vectorEr, it readsφ(r, t) − F(r) = H(r)G(t).
HereF(r),H(r) are the Fourier back-transformations ofSqf cq andSqhq respectively and
φ(r, t) = 〈n(Er1, t1)n(Er2t2)〉 denotes the correlation function for densities;Er = Er1 − Er2,
t = t1 − t2, r = |Er|. For theβ-relaxation window it is therefore predicted that the variations
of the densities in space are uncorrelated with those in time. A practical way to test this
statement [8] is based on the rewriting of equation (4a) as

1φ(r, t) = φ(r, t)− φ(r, t ′) = H(r)[G(t)−G(t ′)].
Heret ′ is some time at the end of theβ-relaxation window. The result to be checked is equivalent
to the property that1φ(r, t)/1φ(r ′, t) = H(r)/H(r ′) is time independent. The property has
been verified for several correlators, obtained in the simulation work for a LJM [29], and
figure 15 reproduces an example. The cited tests for the factorization hold for an intermediate-
time window, which is larger than 2.5 orders of magnitude. Lest the result found be considered
trivial, it should also be pointed out that it was demonstrated explicitly in reference [29] that
the factorization holds neither for the short-time transient nor for the long-time part of the
α-process.

The factorization of the wave-vector dependence and the time dependence of the function
φq(t) − f cq , measured for the hard-sphere colloid within theβ-relaxation window, was
demonstrated for a representative set of wave-vectorsq around the position of the structure
factor peak in references [27,32,33]. The lower panel of figure 5 exhibits an example for the
glass state. The factorization holds for the 2.5-decade windowt > 105 µs. It does not hold for
shorter times relating to transient dynamics and to the crossover to structural relaxation. Indeed,
the initial part of the correlators is given by the law for diffusionφ(t) = exp[−D(q)q2t ], and
this is a paradigm for hydrodynamically correlated propagation of density fluctuations in space
and time. The initial part of theα-process, described by von Schweidler’s law, also exhibits
the factorization property; however, the final parts of the liquid correlators do not [33].

The verification that the intermediate-scattering functions of OTP for incoherent [60] and
coherent [15] neutron scattering in the appropriate regime|φq(t) − f cq | � 1 can be written
asφq(t)− f cq = hqG(t) with a common scaling functiong−(t̂ ) according to equations (4a),

(5a), and this for a representative set of wave-vectors between 0.8 Å−1 and 2 Å−1, is a further
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Figure 15. The ratios1φ(r, t)/1φ(r ′, t ′) of the tagged-particle-density correlation function
differences1φ(r, t) = φ(r, t) − φ(r, t ′) as functions of the distancer obtained from molecular
dynamics simulations for a LJM. The unit of length is chosen such that the peak of the pair
correlation functiong(r) is located near 1. The timet ′ is chosen at the end of theβ-relaxation
window. The timest are spaced evenly on a logarithmic axis covering 2.8 decades. Validity of the
factorization theoremφ(r, t) = F(r)+H(r)G(t) is equivalent to a coalescence of the ratios to the
time-independent functionH(r)/H(r ′). Reproduced from reference [29].

Figure 16. A double-logarithmic representation of susceptibility spectraχ ′′q (ω)/hq of toluene as
functions of the frequencyν = ω/2π for temperaturesT = 143, 159, 169, 191, 239 K (from
bottom to top). The symbols show results obtained by incoherent neutron scattering spectroscopy
for wave-vectorsq between 0.5 Å−1 and 1.8 Å−1. The curves are spectra obtained by depolarized
light scattering. Reproduced from reference [58].

demonstration of the factorization property. The studies of glassy toluene [58] provided an
explicit verification of equation (4b) which is shown in figure 16. The neutron scattering
spectra in theβ-relaxation window could be described for five wave-vectors between 0.5 Å−1

and 1.8 Å−1 by equation (4b), and in addition the same spectraχ ′′(ω) accounted for the light
scattering data. It should be added that the low-frequency parts of theα-processes, which are
not reproduced in figure 16, do not exhibit the factorization property [58].

Another test of the factorization was carried out by comparing the light scattering spectra
for CKN [50] with neutron spin–echo measurements of the density correlators [67]. It was
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shown that the neutron scattering data could be described within theβ-relaxation window
by equation (4a). Here a constantfA and a smoothly driftinghA were chosen as the only
fit parameters;G(t) was theβ-correlator obtained by back-transforming the susceptibility
spectrumχ ′′(ω) from the fit of light scattering data [50]. The fit was done within the extended
MCT, which accounts also for the influence of thermally activated jump processes on the
β-relaxation dynamics [68]. The interpretation of the neutron scattering data could be done
even with a temperature-independent amplitudehA if the contribution of theα-process was
considered [69]. Unfortunately, the window accessible for the spin–echo spectrometer and the
accuracy of the data are not sufficient to enable one to use the cited neutron scattering results
as proof of the correctness of MCT, as was emphasized in reference [70]. Nevertheless it is
support for the theory that a quantitative interpretation of a strongly temperature-dependent
set of correlation functions for the stretched dynamics of CKN [67] can be given by choosing
only two temperature-independent amplitudesfA, hA as fit parameters.

5. Dynamics within the second-scaling-law regime

5.1. α-relaxation scaling

The dynamics within the window, where the liquid correlators decay from the plateauf cq to zero,

is referred to asα-relaxation. One gets the asymptotic expansion:φq(t̃τ ) = φ̃q(t̃) +Ot̃(σ ),
where theα-relaxation scaleτ is normalized according to equation (3a): φ̃q(t̃ → 0) =
f cq − hq t̃b + O(t̃2b). The result can be generalized to correlators of other variablesA to give,
to leading order,

φA(t) = φ̃A(t/τ ). (8a)

This is equivalent to the formula for the susceptibility

χA(ω) = χ̃A(ωτ). (8b)

The master functions̃φA(t̃ ) andχ̃A(ω̃) are given by the structure at the critical point. They are
independent of the separation parameterσ . The strong control-parameter dependence of the
α-process is entirely due to that of its scaleτ , referred to as the second critical scale orα-scale.
The scaling laws (8) have often been observed in classical research on structure relaxation,
where they are referred to as time–temperature superposition principles.

The α-relaxation master functions depend on the probing variableA and therefore
no generally valid expression can be given. Generically, the master correlators decay
exponentially for very large rescaled or reduced timest̃ : φ̃A(t̃ → ∞) = O(exp(−0At̃)).
This implies a regular small-frequency susceptibility spectrumχ̃ ′′A(ω̃ → 0) = O(ω̃). For
small rescaled times the von Schweidler expansion, equations (3), holds:

φA(t̃ → 0) = f cA − hAt̃ b + h̃At̃
2b + · · · .

This is equivalent to a fractal high-frequencyα-peak tailχ̃ ′′A(ω̃ → ∞) ∝ 1/ω̃b + O(1/ω̃2b).
In the limit of large wave-vectors,q → ∞, the master functions approach Kohlrausch’s
law,φK(t̃ ) = fK exp(−γK t̃βK ), where the stretching exponentβK equals the von Schweidler
exponentb: φ̃q(t̃ ) ∼ f cq exp(−γq t̃b) [71]. Therefore it is a plausible assumption, which
is supported by representative numerical solutions of MCT equations, that the Kohlrausch
function is a reasonable fit to the major part of the master functionφ̃A(t̃ ). However, the probing-
variable-dependent Kohlrausch exponentβK , as opposed to the von Schweidler exponentb,
does not have a precise meaning. It is merely a convenient number quantifying theα-decay
stretching. If the density correlators are fitted to Kohlrausch’s law, the exponentβq varies with
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Figure 17. Density correlatorsφq(t) = f (q, τ/τα) for various packing fractionsϕ measured
by photon-correlation spectroscopy for a hard-sphere-colloidal suspension as functions of the
logarithm of the rescaled timest/τα = t̃ = τ/τα . The rescaling timeτα is fitted for eachϕ
such that the correlators are superimposed for long times. The full curves show the MCT master
functionsφ̃q (t̃ ) of theα-process for the HSS. The peak of the structure factorSq is located near
qR = 3.5. Reproduced from reference [72].

wave-vector. In the large-wave-vector limit one getsβq → b. This prediction found support
in molecular dynamics simulation results obtained for water [45].

It was shown for a set of wave-vectors that the measured correlators for the hard-sphere
colloids obey the scaling law (8a). The predicted master functions̃φq , which exhibit a
considerableq-dependence, account for the shape of the measured decay curves within a
time window larger than two orders of magnitude [27]. Figure 17 [72] illustrates this finding.
The decay curves, measured for the colloid of polysterene-micronetwork spheres, mentioned
above in connection with figure 10, demonstrateα-scaling for the long-time decay for a three-
decade window [66]. Also the correlators for translational and rotational motion obtained for
the simulations of a liquid of linear molecules obey theα-scaling law—again with the exception
of the ones dealing with angular momentum index` = 1—and figure 7 exhibits an example.
The superposition principle has been confirmed for simulations done for the LJM [28–30] and
for water [41,43–45]. An example relating to the latter results is shown as figure 8.

The left-hand panel of figure 18 reproduces susceptibility spectra measured by depolarized
light scattering spectroscopy for OTP [63]. Theα-peak has been detected within the accessible
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dynamical window for temperatures above 320 K. Optimal fits of theα-peak with Kohlrausch
susceptibilities are shown by the full curves. The Kohlrausch exponentsβK found decrease
somewhat with increasingT but they are constant within the experimental uncertainties for
T > 360 K. Uncertainties of theβK are caused by the ambiguity concerning the decision as
to which part of the peak should be used for the fit. If one erroneously includes a part of
theβ-process in theα-peak, for example, one gets a Kohlrausch exponent which decreases
with increasingT . Indeed, the right-hand panel exhibits the validity of the superposition
principle and the possibility of describing the upper half of the peak by a Kohlrausch function
with a temperature-independentβK = 0.78. This exponent differs from the von Schweidler
exponentb ≈ 0.6, determined in reference [63] from theβ-relaxation master curve. Theα-
scaling for OTP density correlators, determined by coherent neutron scattering spectroscopy,
is demonstrated in figure 19 [73]. A description of the master functions by Kohlrausch laws is
shown by the curves. The exponentsβK = 0.64±0.03 forq = 1.45 Å−1 andβK = 0.56±0.03
for q = 1.20 Å−1 are different for differentq, and both differ from the stretching exponent
identified for the light scattering data shown in figure 18. The fact that the long-time decay
is more stretched forq = 1.20 Å−1 than forq = 1.45 Å−1 is obvious from the data without
fitting or rescaling analysis, as was shown in reference [73] by plotting the two measured decay
curves for the two cited wave-vectors in one diagram.

The scaling law is derived as an asymptotic-limit result forσ → 0−. Thus, the window
of rescaled times̃t = t/τ , whereφA(t̃ ) agrees withφ̃A(t̃ ), has to expand towards shortert̃ if
T decreases towards the critical temperatureTc or if ϕ increases towards the critical packing
fraction ϕc. Similarly, the window for rescaled frequenciesω̃ = ωτ , where equation (8b)
holds for the data, has to expand to higherω̃ for σ → 0−. Verification of this manifestation
of the asymptotics is an essential step in every test of the MCT results (8). Figures 17, 18,
and 19 show examples of this phenomenon. The violations of the scaling shown for shortt̃

in figures 17 and 19 and for high̃ω in figure 18 are caused by the crossover from the initial
von Schweidler part of theα-process to the critical decay. This deviation is described by the
β-relaxation results of MCT, as was demonstrated explicitly for the hard-sphere colloid in
reference [27], for the micronetwork-sphere colloid in reference [66], for the OTP spectra in
reference [63], and for the OTP neutron scattering functions in reference [15].

Let us assume—for the sake of simplicity—that theα-process can be described by
a Kohlrausch functionφ(t̃ )/φ(t̃ = 0) = exp(−γK t̃βK ). Validity of the scaling law
means that the stretching exponentβK is temperature independent. The MCT prediction
of asymptotic scaling means that forT > Tc the exponentβK varies smoothly withT :
βK(T ) = β0 + β1(T − Tc) + · · ·. So up to which values ofT − Tc can one expect to find
βK(T ) ≈ β0 < 1? All numerical solutions of MCT equations published so far show that
theα-peak moves to higher frequencies with increasing|ε| without serious variation of the
stretching exponent until the peak merges with the band of microscopic excitations. Indeed,
theα-processes of all systems, which could be measured for temperatures above the critical
one, evolve in agreement with the scaling law (8), i.e. with a nearly temperature-independent
stretching exponentβK . This holds in particular for theα-peaks of CKN measured by light
scattering [50] and by dielectric-loss spectroscopy [18] for temperatures up toTc + 60 K, of
glycerol measured by light scattering spectroscopy up to 70 K above the melting temperature
Tm [74] and by dielectric-loss spectroscopy up to 30 K aboveTm [75], and for PC measured by
light scattering spectroscopy [54] up toTm + 130 K and by dielectric-loss spectroscopy [55]
up toTm + 30 K. Dielectric-loss spectra for frequencies below 1 GHz often exhibit anα-peak
stretching which increases with decreasing temperature, and with a reasonable accuracy this
stretching can be parametrized by a Kohlrausch exponentβ(T ) which increases with heating.
Extrapolating this trend it has been concluded occasionally thatβ(T ) approaches unity for
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Figure 18. A double-logarithmic representation of the susceptibility spectraχ ′′(ω) of OTP as
functions of the frequencyf = ω/2π measured by depolarized light scattering spectroscopy. The
data in the panel on this page refer to the temperaturesT = 320, 330, 340, 350, 360, 370, 380,
395, 415, 435 K (from left to right). The full curves are fits with Kohlrausch functions where the
stretching exponentβK decreases from about 0.87 forT = 320 K to about 0.75 forT = 360 K and it
is 0.76±0.02 for larger temperatures. The panel on the facing page shows the spectra as functions of
the rescaled frequencyf/fmax, wherefmaxis the position of the susceptibility maximum determined
by the fits in the panel on this page. The smooth curves with labelsβK = 0.78 and 1.0 are Kohlrausch
spectra with the corresponding exponentsβK . Reproduced from reference [63].

T near the melting temperatureTm. These experimental results are not in contradiction to
MCT, since the above-mentioned spectra relate to relaxation belowTc, while theα-scaling
law was derived within MCT forT > Tc. However, the extrapolations ofβ(T ) to unity
for T > Tc, i.e. extrapolations to temperatures where theα-peak occurs in the GHz band,
have been shown to be incorrect in those cases for which the dielectric-loss spectra have been
measured [18,55,75].

For very high temperatures above someT ∗, structural-relaxation anomalies should be
absent; relaxation should be a stochastic process characterized byβK(T > T ∗) ≈ 1. In
this senseβK has to eventually increase to unity upon heating. This approach ofβK → 1
is demonstrated for the simulation data of a LJM in reference [28] and for the results of a
molecular liquid in reference [39]. In both casesT ∗ > 2Tc. ThusT ∗ is so large that it is not
relevant for structural-relaxation research.

5.2. The second critical timescale

The control-parameter-sensitive timescaleτ , which enters von Schweidler’s laws, equ-
ations (3a), (3b), and the scaling laws, equations (8a), (8b), is not identical with the first critical
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Figure 18. (Continued)

scaletσ , contained in equation (7). The ideal MCT again yields a power-law divergence but
the corresponding exponentγ is larger than the exponent 1/(2a) enteringtσ :

τ = B−1/bt0/|σ |γ γ = [1/(2a) + 1/(2b)]. (9)

The scalet0 is the same as in equations (2a), (7) andB is a number of order unity given byλ.
Formula (9) is an asymptotic result. It becomes invalid if|σ | ∝ (T − Tc)/Tc ∝ (ϕc − ϕ)/ϕc
is too large since in this case the state is too far from the glass transition singularity. But
it becomes invalid also if|σ | is too small, since hopping effects, which are ignored in the
ideal MCT, prevent the system from reaching the singularity. These hopping processes cut
off the τ -divergence. The specified complications make it hazardous to apply the formula
1/τ ∝ |T −Tc|γ to obtain a fit to data using bothTc andγ as free parameters. The parameters
Tc andγ of a fit attempt are strongly correlated and depend on the temperature interval chosen
for a fit. The scale is determined best by verifying the scaling equations (3), (8), as demonstrated
above in figures 7, 8, 17, 18, and by takingτ from the required shifts parallel to the logt or
logω axis. But signal-versus-noise problems are not so severe for theα-process as for the
β-dynamics. For example, from figure 10 one can deduce directly a characteristic timescale
τα via φ(τα) = 0.5, and from susceptibility spectra in figure 18 one can read off the position
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Figure 19. Density correlatorsφq for two wave-vectors measured by coherent neutron scattering
spectroscopy for OTP as functions of the reduced timest̃ = t/τs . The data refer to the temperatures
T = 313, 320, 330, 340, 360, 380, 400 K (from left to right). The scaling time is given by
τs = τη(T )/τη(T = 290 K), whereτη = η(T )/T is theα-scale of the shear viscosityη. The full
curves show Kohlrausch functions with stretching exponents 0.64 (upper curve) and 0.56 (lower
curve). Reproduced from reference [73].

ωmax of theα-peak; then one getsτ ∝ τα or τ ∝ 1/ωmax.
Theα-peaks shown in the top panel of figure 9 lead to the timesτ ′α ∝ τ , represented as

filled circles in figure 13; and the line through the data is the power law, equation (9), with the
exponentγ = 2.9; this value corresponds to the result for the exponent parameterλ = 0.81
of the preceding analysis of the spectral minimum [50]. Formula (9) describes the data for the
two-orders-of-magnitude shift of theα-peak which was observed in this experiment. The same
conclusion was arrived at for the analysis of the OTP results shown in figure 18 [63] as well
as for the scales of theα-processes measured by light scattering for Salol [47] and PC [54].
The findings for Salol were corroborated by the analysis of time-resolved optical Kerr-effect
results: theα-scaling law was confirmed forT between 293 and 363 K and the scale followed
the power law, equation (9), withTc andγ consistent with the other cited findings [48]. As
discussed above for theβ-relaxation scales, it is more practical to test the power-law behaviour
using a rectification diagram. The interpolation using a straight line of theτ−1/γ -versus-T
data set yields a further estimate ofTc. For the cited examples [47, 50, 54, 63] the results
are consistent with the previously discussed findings for the crossover temperature obtained
from theβ-relaxation scaling analysis. Similarly, theν1/γ

max-versus-T diagrams, deduced for
the dielectric-loss data for PC [55], corroborated the values ofγ andTc obtained by theβ-
relaxation analysis of results for other probing variables [54,56]. The lowest panel of figure 12
demonstrates such an analysis of the CKN data for theα-peak frequencyνmax deduced from
dielectric-loss spectroscopy [37].

The dashed curve in figure 14 shows the power lawτ ∝ (ϕc−ϕ)−γ with the valueγ = 2.6
calculated for the HSS. It describes the variation ofτ over more than three orders of magnitude
for σ > −0.1 as observed for theα-process of the density fluctuations for the hard-sphere
colloid [33]. For this system the critical point is determined so well that it is adequate to
present the data as a logτ -versus-log|ε| diagram;|ε| ∝ |σ | ∝ (ϕc − ϕ)/ϕc. Such a diagram
is shown in figure 20, where recently measured relaxation times for a tagged-particle-density
correlator and for the diffusion constantD are also included [76]. The transport coefficientD
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Figure 20. Double-logarithmic plots of the diffusivity (squares),α-relaxation rates 1/τ of a tagged-
particle-density correlator (circles), andα-relaxation rates 1/τα for a density correlator (crosses)
versus(ϕc − ϕ)/ϕc. The data are determined from photon-correlation spectroscopy results for a
hard-sphere colloid. The straight lines interpolate the data sets with a slopeγ = 2.7. Reproduced
from reference [76].

is proportional to the timeτ for theα-process of the mean squared displacement. The data in
figure 20 follow straight lines, thus confirming power-law variation. The slope is the exponent
γ for which the predicted HSS value 2.6 is confirmed within a 5% uncertainty in all three
cases.

For the relaxation curves of the polysterene-micronetwork-sphere colloids, shown in
figure 10, an increase of the timescaleτ by about five orders of magnitude is observed. It
follows the power law with exponentγ = 3.6, which corresponds to the exponent parameter
λ = 0.88 deduced from the precedingβ-relaxation scaling verification [51].

The analysis of the simulation results for the density fluctuations of water [43, 44],
mentioned above in connection with figure 8, identified the valueb = 0.50 for the von
Schweidler exponent. From equation (9) one calculates an exponentγ = 2.7 for the power-
law exponent for the asymptotic variation of the diffusivity:D ∝ (T − Tc)γ . This formula
is consistent with the simulation data and accounts for a variation of the diffusivity over three
orders of magnitude [44]. The simulation provided also theα-relaxation timescalesτ` for
the reorientational correlators for angular momentum index` = 1, . . . ,5. The rectification
diagram confirmed the cited power-law behaviour with a value ofTc consistent with all of
the other estimates for the crossover temperature [46]. The data exhibit a trend for 1/τ to
be smaller than the power-law extrapolation ifT − Tc > 60 K. These deviations from the
asymptotic law are largest forτ1. Equation (9) was also tested and confirmed for the coherent
and incoherent density correlators obtained by molecular simulations for a LJM [28–30] and
for the cited model for a molecular liquid [38–40]. However, for both systems the diffusivity
D did not exhibit the predicted behaviour. It was already mentioned that the reorientational
correlators for the linear molecules for angular momentum index` = 1 did not exhibit the
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α-scaling law and therefore it is not surprising that they did not follow the predicted power
law of theα-relaxation scale either.

5.3. Theα-scale coupling

Consider some variables, sayA andB, coupling to density fluctuations, and let us denote their
α-relaxation times byτA andτB respectively. If, e.g.,A is the shear stress andB a fluctuating
force acting on a tagged particle,τA = τη andτB = τD are timescales for the variation of
the viscosityη and diffusivityD respectively. The conventions for the definition of the scales
might be different from the one used above. But equations (8) imply the prediction of the
α-scale coupling:τA = CAτ, τB = CBτ whereτ is the second critical scale. The coefficients
CA,CB are smooth functions of control parameters and thus they can be treated as constants
in a leading-order asymptotic expansion. Scale coupling is demonstrated in figure 20 [76].
It shows a comparison of three scales, namely the ones for coherent density fluctuations, for
tagged-particle-density fluctuations, and for diffusion in hard-sphere colloids: the measured
scales vary by about a factor of 1000, but the logarithm of their ratios, i.e. the distances between
the lines in the figure, are independent of the packing fractionϕ.

The α-scaling plot for the OTP neutron scattering data in figure 19 was obtained with
theα-scale for the viscosity [73]. Thus the figure demonstrates the coupling of the scale for
the measured density fluctuations with microscopic wavelengths to the timescaleτη for shear
fluctuations with macroscopic wavelengths. The viscosity of OTP follows reasonably well the
power law (9) withγ = 2.5 [4], and this agrees within the experimental uncertainties with
the exponentγ = 2.8 derived from the scaling-law analysis of the depolarized light scattering
spectra [63]. The coupling of theα-scale measured by depolarized light scattering for Salol
to the viscosity scale was demonstrated in reference [47]. The proof that the scale of the
two variables follows the law(T − Tc)γ with compatibleTc andγ implies the proof of the
coupling. Thus the results discussed above for PC and CKN exemplify scale coupling and so
do the results cited in section 5.2 for the various molecular simulations.

Figure 21. The rotational diffusivityDR (triangles) and translational diffusivityD versus the
reciprocal viscosityη in a double-logarithmic representation. The dots refer to self-diffusion, the
squares and crosses to the diffusivity of tracer molecules in OTP. The slopeξ = 1 demonstrates
scale coupling andξ 6= 1 decoupling. Reproduced from reference [77].

The coupling of scales is not trivial, contrary to what is sometimes suggested by appeal
to the Stokes–Einstein- or Stokes–Debye-relation formulae. ForT < Tc relaxation is due
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to thermally activated processes. There is no reason for the activation energy for diffusion,
relating to hops of a single particle over saddle points in the potential landscape, to be the same
as the one for the viscosity, which relates to the coherent motion of many particles. Coupling of
the scalesτD andτη would mean that the logD-versus-log(1/η) curve has a slopeξ = 1. But
figure 21 [77] shows that this slope is about 0.79 for low temperatures in OTP. DecreasingT

from 290 K to about 250 K implies a variation ofτD/τη by about a factor of 100. The critical
temperatureTc for this system, established by the neutron and light scattering experiments
cited above, is 290±10 K. Thus figure 21 demonstrates decoupling of scales forT < Tc. The
MCT prediction of scale coupling refers to the regimeT > Tc, and indeed for the nearly three-
orders-of-magnitude scale variation forT > Tc, documented in figure 21, the scale coupling
ξ = 1 is confirmed. An addition to the preceding discussion might be in order. If the tagged
particle is chemically identical to the liquid particles,D is called the self-diffusion constant.
If it is different, e.g. some dye molecule,D is often referred to as the tracer diffusivity. Thus
the filled circles in figure 21 demonstrate scale coupling for the self-diffusion forT > Tc, and
the open squares demonstrate scale decoupling for a tracer diffusivity forT < Tc. The cited
scale coupling is derived in MCT under the assumption that the tagged-particle–host-particle
coupling is sufficiently strong. If this coupling decreases below a critical value, the possibility
of a glass forT 6 Tc containing non-localized tracer particles arises. This state is a model, for
example, for a conducting glass. For such small tracer–host couplings, the tracer diffusivity
D does not decrease to zero proportionally to 1/η if T decreases towardsTc; hence for such a
case, scale coupling is not predicted.

The most sensitive test of scale coupling is a plot of the ratio of the two scalesτA/τB = C
as function of the control parameter. A plot ofτη/τD versusT for OTP data [78] corroborates
the findings demonstrated in figure 21. Exactly the same behaviour is exhibited by the(τη/τD)-
and(τη/τε)-versus-T plots of Salol, whereτε is theα-relaxation scale for the dielectric-loss
peak: the scales are coupled forT > Tc and they decouple for temperature belowTc [79].
The scale coupling is a prediction valid for parameters so close to the transition singularity
that the non-linear mode-coupling effects dominate the dynamics. The asymptotic formulae
do not imply predictions forT far aboveTc or ϕ far belowϕc. Indeed, for the hard-sphere
colloids the ratioC = τD/τη, which should be constant if the Stokes–Einstein formula is to
be correct or if scale coupling is to be valid, decreases from 6 to 4 ifϕ increases from zero
to 0.5 [80]. It would be interesting to know whether this ratioC becomes independent ofϕ
in the interval 0.5 < ϕ < ϕc, where the other cited experiments for the hard-sphere colloids
show the dominance of mode-coupling effects.

The exponentb ≈ 0.49 was estimated for the simulation data for a LJM by verification
of von Schweidler’s law; also the validity of the superposition principle was confirmed. From
this von Schweidler exponent one obtains the MCT predictionγ ≈ 2.6. Theα-relaxation
scales for density fluctuations are consistent with the predicted power law with the cited value
for γ , as shown in figure 22. However, the scales for the diffusivities of the particles do not
lead to a straight line running parallel to the first one in this diagram [28]. A similar violation
of MCT α-scale asymptotics was reported for the simulation data for a molecular liquid [39].

Brillouin-scattering spectroscopy is a technique which explores the implications of
structural relaxation for hydrodynamic excitations. A Brillouin-scattering spectrum is deter-
mined by the longitudinal elastic modulusM(ω). The spectrum is dominated by the scattering
resonance whose positionωB and width are given byM(ωB). It is practically impossible to
determine from the data the frequency dependence ofM(ω) for a sufficiently large dynamical
window to allow one to examine the evolution of structural relaxation. To interpret the spectra,
one has to impose some model forM(ω) and then use fits to the data for the determination
of the model parameters. Traditionally, anα-process-only model has been studied: a white-
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Figure 22. Double-logarithmic representations of the inverse relaxation times 1/τ (dashed curves)
and diffusivityD (dotted curves) for A particles (circles) and B particles (squares) obtained by
molecular dynamics simulations for a LJM as functions ofT −Tc. The straight-line interpolations
represent power laws with exponents given by the slopes. Reproduced from reference [28].

noise background plus anα-process fit formula, obtained, e.g., from a Kohlrausch function
fK exp(−t/τK)βK . Repeatedly it has been reported as a result of such studies thatβK and
τK/τη increase with increasing temperature, i.e. results which suggest a violation of the time–
temperature superposition principle and of theα-scale coupling respectively. However, the
specified model ignores the possible existence of the MCTβ-process. If forT ∼ Tc the
modulus were to exhibit the spectral enhancement between theα-peak and the microscopic-
excitation band which was detected for all of the other measured functions cited in section 4,
theα-peak tail alone would underestimateM ′′(ωB) and incorrectly describe the temperature
dependence ofM(ωB). The fit would compensate for this defect by readjustingβK andτK/τη
and this by different amounts for different temperaturesT . This problem was recognized and
discussed in detail for CKN data in reference [14]. It was concluded that the fit parameters
τK andβK , which are based onα-process-only models, are not generally meaningful. It was
shown, in addition, that the apparent temperature dependence ofτK/τη andβK was eliminated
for CKN after some estimate of the critical spectrum for the modulus was included in the
model forM(ω). A similar result could be obtained by anad hocaddition of some spectral
bump to theα-peak ofM ′′(ω), located in the GHz band and described, e.g., by an essentially
temperature-independent Debye peak. At present it is not possible to discriminate between
the indicated models for the data analysis. Consequently, the previously reported fit results
βK, fK andτK for Brillouin-scattering spectra cannot be used for an assessment of MCT.

6. The evolution of structural relaxation

In a leading-order treatment of the MCT dynamics, using the separation parameterσ as a small
quantity, the long-time limit of the first-scaling-law description of the correlators is identical
with the short-time limit of the second-scaling-law description. Therefore the two results
can be spliced together to provide a complete description of the structural relaxation near the
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glass transition singularity. The deviation from theα-relaxation scaling on the high-frequency
wing of the susceptibility peak, which is demonstrated by the right-hand panel of figure 18,
was explained by theβ-relaxation scaling-law results in reference [63]. Similarly, the large
violations of the superposition principle for short rescaled times, which are demonstrated in
figure 17, were explained quantitatively in reference [27] using theβ-relaxation formulae. The
violations of theβ-scaling for small frequencies, which are obvious in the bottom panel of
figure 9, are explained by the theory for theα-process [50]. This subtle interplay ofα- and
β-dynamics is connected with the appearance of two critical timescalestσ andτ . Both diverge
within the ideal MCT upon cooling or compressing the system, but their ratio diverges as well:
τ/tσ → ∞ for σ → 0−. This phenomenon is demonstrated by the data in the top panel of
figure 9. The frequencies for the spectral minimaωmin and maximaωmax decrease strongly
with cooling, but the ratioωmax/ωmin also decreases by about a factor of 5 ifT decreases from
195◦C to 140◦C. The increase ofτ/tσ can be inferred from the raw data in the time domain
only if the system is so close to the transition singularity that the plateauf cq is obvious. Then
the increase ofτ , given byφq(τ )/f cq = 0.5, relative tot− ∝ tσ , given byφq(t−) = f cq , can
be read off directly. The ratioτ/tσ for the data in figure 10 varies by more than two orders
of magnitude [51]. The predicted two-step-relaxation scenario—the first step governed by
the dynamics on the scaletσ and the second step by the dynamics on the scaleτ—is tested
and confirmed by all of the studies quoted in the preceding two sections, where for a given
material a simultaneous consistent analysis of theα- andβ-relaxation with MCT formulae
proved possible. This conclusion can be corroborated by splicing together the results of theα-
relaxation fit with theβ-relaxation fit to a combinedα–β fit of the whole structural-relaxation
pattern.

Figure 23 [27] shows as full curves forϕ < ϕc the results of a combination ofα- and
β-relaxation results for the HSS, where the predicted values for the exponent parameterλ and
for the normalized theoretical master functionsφ̃q(t̃ )/f cq have been used as input. Analogous
figures for three additional wave-vectors are published in references [27,33]. The amplitudes
f cq , hq entering the analysis had been found to agree with the predicted values as shown
in figure 3. The separation parameterσ , entering the various scales, was found to vary as
σ = C(ϕ − ϕc)/ϕc with C ≈ 1.2 being consistent with the predicted value for bothϕ < ϕc
andϕ > ϕc [72]. The ratioτ/tσ of the two critical timescales varies by more than a factor
of 20, as is demonstrated in figure 14. Besides the scalet0 for the transient motion, which
is a number determined by the viscosity of the solvent, there entered as a fit parameter only
the critical packing fractionϕc. The valueϕc had to be adjusted here, as in any other test of
a singularity theory, to match to the experimental transition point (compare section 2.2). The
quoted results demonstrate that the description achieved for the evolution of glassy dynamics
extends over four to five decades in time, holds for a significant range ofq-values, and holds
for α-relaxation times that vary over four orders of magnitude [81]. Therefore the cited results
imply that MCT provides a first-principles understanding of the HSS glass transition as far as
it manifests itself in the density-fluctuation dynamics.

Ever since Maxwell’s invention of the theory of visco-elasticity, the behaviour of shear
has been of interest in the discussions of glassy dynamics. Also, for a hard-sphere-colloidal
suspension the dynamical shear modulusG(ω)was measured for large packing fractions using
a Cuette viscosimeter [82]. The data analysis is complicated by the fact that the microscopic-
excitation spectrum exhibits anω1/2-anomaly. The data extend over a four-decade frequency
window, and they can be explained using the MCT scaling-law formulae for the HSSβ-process.
It was emphasized that neither the evolution of the measured plateau of the reactive partG′(ω)
nor the minimum of the dissipative contributionG′′(ω) can be understood without the use of
MCT results [82].
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Figure 23. Density correlatorsφq(t) for two wave-vectorsq as functions of log10(t) measured
for various packing fractionsϕ by photon-correlation spectroscopy for a colloidal suspension of
hard spheres with radiusR. The main maximum of the structure factor for the packing fraction
at the freezing pointϕf = 0.494 is located atqR = 3.46. The dashed curve in the upper panel
is the exponential exp[−q2D(q)t ] with D(q) denoting the short-time diffusivity. The full curves
for ϕ < ϕc are fits using the combination of the leading-order asymptotic results for theα- and
β-processes predicted by MCT for the HSS. The full curves forϕ > ϕc are fits by the MCT results
for theβ-process. Reproduced from reference [27].

A combined α–β analysis for correlation functions of a colloid of polysterene-
micronetwork spheres has been presented in reference [61]. It accounted well for the evolution
of the structural relaxation for this system, which extended over an enormous dynamical
window of seven orders of magnitude. The system under discussion is a candidate for treatment
via a first-principles MCT calculation. However, it was shown that the structure factorSq is
rather different from that of a simple Lennard-Jones system. The variation ofSq due to
changes of the packing fractionϕ does not follow the pattern familiar from the discussion
of the cage effect: with increasingϕ the peak height can decrease [83]. It is not known
which interaction causes such behaviour. Therefore one cannot meaningfully extrapolate the
measuredSq over the wholeq-range, a prerequisite for microscopical calculations of, e.g., the
exponent parameterλ.

For complicated systems like CKN and OTP, first-principles MCT results are not yet
available. Therefore a data analysis has to use the theoretically well defined parameters
λ,C, Tc, f

c
A, hA, t0 as fit quantities, as was anticipated already in connection with the various

MCT interpretations reported above for these systems. Figure 24 represents a summary of an
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Figure 24. Double-logarithmic representations of the susceptibility spectraχ ′′(ω) as functions
of the frequencyf = ω/2π obtained by depolarized light scattering spectroscopy for OTP for
temperaturesT = 320, 340, 360, and 380 K. The full curves are combinations of fits with the MCT
formulae for theβ-relaxation and a Kohlrausch-law fit for theα-peaks with stretching exponents
βK shown in the inset. Reproduced from reference [63].

exhaustive analysis of the depolarized light scattering data for OTP [63]. For splicing together
the two scaling-law formulae, theα-relaxation master function was modelled by a Kohlrausch
law. It is characterized by the stretching exponentβK . The inset shows thatβK is constant
within the experimental uncertainties. The structural-relaxation spectra shown extend over
a window of three-orders-of-magnitude variation of frequencyf below 0.1 THz. For larger
frequencies the dynamics is influenced by oscillatory motion, which is not treated by the
various asymptotic formulae. Frequencies below 0.1 GHz are not accessible with the tandem
Fabry–Ṕerot spectrometer and therefore for temperatures below 320 K theα-peak maximum is
not visible any longer. The data for these lower temperatures have been analysed by using the
β-relaxation theory alone, albeit by the one of the extended MCT [63]. The numbersλ andTc
identified are consistent within the experimental uncertainties with the values used to describe
the results of the neutron scattering research, as can be inferred from reference [15] and the
papers quoted there. The exponentγ for the α-relaxation timescale is known to describe
adequately the viscosity variation of OTP [4] and, because of the scale coupling demonstrated
in figure 21, it also agrees with the exponent used in describing the temperature variation of
the translational and rotational diffusion forT > Tc.

There is also a test of MCT results based on depolarized light scattering spectra of OTP
that was carried out for a 90◦ scattering geometry [84]. It was shown that the measured
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spectral minima can be interpreted with the MCTβ-relaxation formulae using values forTc
andλ consistent with the ones known from the preceding neutron scattering studies. But two
objections against the applicability of the theory have been formulated. First, it is reported
that the Kohlrausch exponentβK for theα-peak increases with temperature forT > Tc such
that it is nearly unity forT > 320 K= Tc + 30 K. It was argued that the MCT prediction for
T > Tc of an essentially temperature-independent Kohlrausch exponentβK is ‘in contradiction
to the experimental data’ [85]. However, the authors define theirα-peak differently to how it
is done in MCT. Instead of using the measured peak directly, they first subtract a Debye peak
from their spectra. Moreover, the applied fit procedure is unstable and it can be used, with an
even better confidence level, also to derive a fit with a temperature-independentβK [86]. The
second objection concerns the statement that the minima positionsωmin, which are obtained
from an analysis of theβ-scaling, differ from the minima obtained from a data interpolation by
an even polynomial inξ = log(ω/ωmin): χ ′′(ω)− χmin = A2ξ

2 +A4ξ
4 +A6ξ

6. But the data
in reference [84] do not suggest the symmetryy(ξ) = y(−ξ), and the MCT result does not
exhibit this symmetry either, becauseb > a. It does not seem a reasonable objection against a
theory if fits, which interpolate data by a formula which contradicts that theory, lead to some
inconsistencies.

7. Various further tests

7.1. Structure and structure relaxation

MCT was derived for strongly interacting amorphous matter. The input information needed
for the MCT equations of motion are equilibrium structure factors and these structure factors
are assumed to depend smoothly on the wave-vectors and on the control parameters. The cited
leading-order asymptotic formulae would not necessarily be correct if there were long-range-
order singularities for the wave-vector-dependent compressibility, as one would expect near
second-order phase transitions. If there were to be a singularity in some other susceptibility,
it would not be of concern for MCT as long as this singularity does not introduce divergences
in the mode-coupling integrals. Structure functions which enter MCT are taken from other
theories or from experiment. The cited results for the HSS, for example, are based on the
Verlet–Weiss theory forSq . The MCT calculations for the LJM in reference [31] are based
on structure factors obtained from molecular dynamics simulations for this system. Studies of
the structure factor of OTP showed thatSq varies smoothly if the temperature varies between
Tc − 30 K andTc + 30 K [15,87]. Nor does the structure factor of CKN exhibit any anomaly
for T nearTc [88]. MCT does not address the question of why systems like OTP or CKN
can be kept in a supercooled state while other systems cannot. For both systems the basic
assumptions of MCT seem justified.

MCT has shown that the existence of theα-process and its detailed properties forT > Tc
can be understood without considering the problem of supercooling. For the explanation of
the glassy dynamics of OTP in the GHz window, for example, it is irrelevant that the true
equilibrium state for temperatures below the melting temperatureTm = 329 K is a crystal.
The experiments, which are documented in figures 18, 19, 24, show that theα-process is
described by the same master function and that the relaxation scaleτ follows the same power
law for temperatures increasing from belowTm to 50 K aboveTm. Similarly, theα-process of
PC was shown by dielectric-loss spectroscopy to follow the MCT prediction for temperatures
up toTm + 30 K [55] and by light scattering up toTm + 130 K [54].

In order to keep a dense hard-sphere colloid in an amorphous state it is necessary to
allow for a certain percentageP of polydispersity; otherwise the system forms a cubic crystal
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for ϕ > ϕf = 0.494. The Percus–Yevick theory yields a structure factorSq which varies
smoothly withP , and therefore the MCT results, which are based on thisSq , are also robust
with respect to changes of the polydispersity. In particular one can use the theoretical results
for the monodisperse system to describe the polydisperse sample within the experimental
uncertainties, provided thatP is not too large. These conclusions are supported by the
observation that structural-relaxation properties, as opposed to nucleation phenomena, are
insensitive with respect to changes ofP [89].

A result of particular importance for the physical interpretation of MCT is the following.
The correlators outside the transient can be written asφq(t) = Fq(t/t0), where the functionsFq
are determined completely by the equilibrium structure. The transient dynamics, in particular
all details of the underlying microscopical equations of motion, enter via a single timescalet0
only, which depends smoothly on control parameters. Molecular dynamics simulations are the
proper technique to test this general prediction. A possibility is the comparison of data, say for a
binary mixture, where for fixed interaction potential the mass ratio of the particles is varied [90].
The details of the normal-liquid dynamics depend on the mass ratio but structural relaxation
should not, except for a change oft0. This is due to the fact that the structure factors of classical
liquids are independent of the particle masses; they are determined solely by Meyer factors,
i.e. by the ratios of potential and thermal energies. Another possibility for a test is making
a comparison of a system obeying Newtonian dynamics with one obeying some stochastic
dynamics as was done in reference [91]. Structural relaxation was observed for windows of
two to three decades. In contrast to the MCT prediction it was concluded that the Kohlrausch
exponents for theα-process description differ significantly for the two models and that the
structural-relaxation dynamics depends qualitatively on the nature of the underlying equations
of motion considered. However, it is not evident that the cited conclusions are justified by
the simulation results published in reference [91]. Theα-peaks of the susceptibility spectra
for density fluctuations studied for a wave-vector near the position of the structure factor
peak agree for a two-decade dynamical window; in particular the twoα-peak spectra have
the same upper 45%. From this fact one can only conclude that a description by Kohlrausch
laws leads to identical stretching exponentsβK within the uncertainty of the data. Similarly,
the correlator decays of the two models are 70% identical and this for long times. For the
Newtonian dynamics the initial part and the crossover to the structural relaxation shows the
same qualitative behaviour as is exhibited by numerical solutions of MCT models. This leads
to a bump of the susceptibility spectrum which would cover a possible anomalous spectral
minimum, quite similar to the oscillation bump near 400 GHz which masks the critical OTP
spectrum for 320 K in figure 24. The solutions of the Brownian-dynamics model, on the other
hand, exhibit a stretched decay from 90% to 70%, which yields for the spectrum the crossover
from theα-peak to a minimum. The minimum spectral intensity is strongly enhanced above
any estimate for a regular white-noise-background spectrum. This finding is the signature of
the underlying critical decay. Therefore I conclude that the results of reference [91] support
the cited MCT prediction. A discussion of structure relaxation has appeared recently for the
LJM, comparing a Newtonian and a stochastic motion model for the equations of motion. The
α-scaling plot followed the pattern predicted by MCT; the master functions for the two models
are identical and so are the scaling times for sufficiently smallT −Tc [36]. Figure 4 shows the
comparison of the critical glass form factors obtained for the two models (filled versus open
symbols). Thus the formulaφq(t) = Fq(t/t0) has been confirmed completely as far as theα-
process is concerned. Furthermore, it was shown for the stochastic dynamics model that for the
lowest accessible temperature the correlator approaches and leaves the plateauf cq as predicted
by theβ-relaxation master functiong−(t̂ ) for this system, while for the Newtonian-dynamics
model the correlators for̂t = t/tσ < 1 are dominated by oscillations.
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A facet of the problems discussed in the preceding paragraph is the following. Let us
consider models which all have the same interaction. Suppose in addition that there is a
minimal separation parameterσmin so that data need to be considered only forσ < −σmin. In
a simulation study,σmin might be determined by the lowest temperature aboveTc for which
equilibration of the system can be achieved. Then one can choose the microscopical equations
of motion such that the transient dynamics masks the critical decay. It is a typical result of
MCT solutions that for a certainσmin no critical decay is detectable in theφq(t)-versus-logt
curves, even though theα-process exhibits theα-scaling law, the von Schweidler decay, and
the power-law variation of theα-relaxation scaleτ with the proper exponentγ . Thus, the
impossibility of identifying the 1/ta law in the published simulation results for a LJM [28–30]
or for water [43–45] is not an objection against the applicability of MCT. However, the result
described is not universal, and for the experiments discussed in sections 3 and 4 the 1/ta law
manifests itself for aσmin which is comparable with the ones studied in the cited simulations.
Obviously, it is desirable to invent models for simulation studies which exhibit a critical decay
as strongly as is found in several laboratory studies. The simulation results for a system of
linear molecules [39] differ from the ones for the LJM or water in the sense that a stretched
decay towards the plateauf cq is visible. This is demonstrated in figure 7 for the rescaled
time t/τ varying between 10−4 and 10−2. Indeed, it was shown for translational and rotational
correlators for the lowest temperature studied that the decay towards the plateauf cq and beneath
it can be described by equations (4a), (5a), where theβ-correlatorg−(t̂ ) was evaluated for
the exponent parameterλ = 0.76. Therefore for this model a test of the MCT predictions for
the dynamics within the first-scaling-law regime might be possible.

7.2. Empirical fit formulae

There is a long tradition of fitting structural-relaxation data with empirical formulae. Such work
implies a challenge for MCT in the sense that the range of validity for the fits and the variation of
the fit parameters with, e.g., temperature changes should be explained. Three examples will be
considered. First, let us discuss fits ofφ(t̃ )-versus-log̃t curves with Kohlrausch functions. If
the control parameters are sufficiently far from the critical ones, the curves outside the transient
regime exhibit a single inflection point only. This is the case for the data sets in figure 17 for
ϕ 6 0.535 and for the ones in figure 19 forT > 340 K. In such cases one cannot decide
without additional information which part of the curve should be considered as theα-process.
A free fit using a Kohlrausch law is likely to include a larger dynamical window than a fit
carried out with the constraints provided by MCT. In particular, a free fit for the cited data
sets will not lead to the master functions shown as curves in figures 17 and 19. For example,
it was shown that such a free fit can account for a set of correlators of hard-sphere colloids
as well as a combinedα–β-relaxation fit with MCT formulae [92]. Similarly, an unbiased fit
with Kohlrausch functions is of comparable quality for the description of solvation dynamics
observations to the results of a MCT analysis [56]. These two examples show in particular that
a successful fit with stretched exponentialsfK exp−(t/τK)βK is not necessarily a contradiction
to MCT. MCT explains the success of the fit and the observed increase ofβK with decreasing
ϕ or increasingT respectively by the fact that parts of the crossover from theα-decay for
φq(t) < f cq to the critical decay forφq(t) > f cq are included in the analysis. In addition,
MCT explains the paradox that a free fit of the correspondingα-peak for the susceptibility
spectrum leads to a decrease of the stretching exponentβK with increasingT . The inclusion
of theβ-relaxation widens theα-peak, and this implies a decrease ofβK for the unbiased fit.
But MCT predicts also that for parameters closer to the critical point theφ(t)-versus-logt
curve should exhibit a second inflection point outside the transient regime, as shown for the
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data in figure 17 forϕ = 0.567 and 0.574 and for the ones in figure 19 forT 6 330 K. These
curves cannot be described by a Kohlrausch function and they demonstrate the inferiority of
the empirical fit in relation to the one based on theory.

The empirical fit discussed in the preceding paragraph describes the susceptibility
minimum as a crossover from the high-frequencyα-peak tail,χ ′′(ω) ∝ 1/ωβK , to some
regular-background spectrum. MCT predicts that for parameters sufficiently close to the glass
transition singularity such a description should underestimate the minimum intensity seriously
because there is an enhanced background due to the critical spectrum. Indeed, the failure of the
empirical approach in such cases, caused by ignoring the critical spectrum, was demonstrated
for CKN light scattering spectra for 120 and 150◦C in reference [93] and for the dielectric-loss
spectra of glycerol in reference [75].

A second example of anad hocdata-fitting procedure also concerns the minima of the
susceptibility spectra between theα-peak and the microscopic-excitation spectrum. Suppose
that the high-frequencyα-peak tail can be described by von Schweidler’s law:χ ′′1 (ω) = c1/ω

b,
1 > b > 0. Let us assume also that the logχ ′′-versus-logω graph in the frequency region
relating to the low-frequency wing of the microscopic peak can be approximated by a straight
line of some slopeaeff > 0, i.e. by an effective-power-law spectrumχ ′′2 (ω) = c2ω

aeff .
The crossover from one spectrum to the other produces a minimum at some frequencyωmin

with a certain intensityχmin. A reasonable approximation for this minimum is given by the
interpolation formula

χ ′′int(ω) = χ ′′1 (ω) + χ ′′2 (ω) = χmin[b(ω/ωmin)
aeff + aeff(ωmin/ω)

b]/(aeff + b).

It obeys theβ-relaxation scaling law, equation (5b), if one assumes that the exponentsb
and aeff are temperature independent. MCT shows the approximate validity of all of the
assumptions made above and thus of the fit formulaχ ′′int(ω). In addition MCT implies the
following result: in the asymptotic limit, where the minimum is so far separated from the
microscopic-excitation band that there are no spectral tails due to the transient present any
longer, the background spectrum is the critical one. The latter is specified by an exponent
aeff = a 6 amax ≈ 0.395, which can be determined fromb. Depolarized Raman-scattering
spectra for a window between 40 and about 400 GHz have been analysed for several systems
with the cited interpolation formula [94]. For OTP a fit valueaeff > amax was found. It was
claimed that this finding proves MCT to be not correct quantitatively [94]. However, it is
known that OTP exhibits a bump in the spectral densityφ′′(ω) due to oscillatory motion, often
referred to as a boson peak, which influences the spectra down to 200 GHz as demonstrated
in figure 24. This spectrum can increaseaeff abovea. The asymptotic MCT results for the
first- and second-scaling-law regimes relate to structural relaxation only. Those parts of the
spectra, like the boson peak contribution, which are modified by oscillation dynamics, must
not be included in the windows for the fits with asymptotic results. Indeed, the successful
MCT analysis of the OTP spectra in reference [63] shows that the cited critique of MCT is
unjustified. The fitting of glycerol spectra byχ ′′int(ω) in reference [94] led to the conclusion
that strong deviations from the MCT predictions have been found for this system. Depolarized
light scattering spectra of glycerol have also been obtained by application of a tandem Fabry–
Pérot spectrometer [74], and the window studied in this paper is two orders of magnitude larger
than the one studied in reference [94]. In this work it is concluded that the data are consistent
with MCT, but that the critical spectrum for those temperatures where a spectral minimum
can be detected is masked by the transient spectrum. The conclusions of reference [94] have
been invalidated and the interpretation of reference [74] was corroborated by showing that the
solutions of a MCT model can describe the evolution of the structural relaxation of glycerol
for frequencies between 0.4 GHz and 1 THz [95].
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The third example of an empirical fit is obtained by considering stretched-relaxation
spectra in a one-decade frequency window adjacent to the microscopic-excitation band, say
the toluene results shown in figure 16 between 40 and 400 GHz. An interpolation of the results
with a straight line is possible, i.e. the data can be fitted with a power lawχ ′′(ω) ∝ ωa(T ).
The fit exponenta(T ) increases with decreasing temperature. Such a fit result must not
be considered as an objection against the MCT prediction for a critical spectrum, specified
by a temperature-independent exponenta 6 amax. On the contrary, even the leading-order
asymptotic formula for theβ-relaxation, whose application for a description of the data in
figure 16 was demonstrated in reference [58], describes the experiments. The first scaling
law implies that the coefficienta(T ), defined for a fixed frequency interval, increases with
decreasingT − Tc. For positiveT − Tc one getsa(T ) < a, for T = Tc one findsa(Tc) = a,
and forT falling belowTc the effective exponent increases towards unity. This holds, provided
that there are no disturbances by the transient spectra. If these are present, as discussed in the
preceding paragraph for glycerol,a(T ) may even rise above 1.

7.3. TheT < Tc problems

The most subtle results reviewed in this paper for conventional systems concern the evolution
of the α-process within the GHz window and its interplay with theβ-process as observed
for T > Tc. The characteristic temperatureTc was obtained by scaling-law analysis of
spectra measured forT > Tc and in addition by detecting the Debye–Waller-factor anomaly
for T < Tc. The solutions of schematic MCT models can also be used to describe the
evolution of the depolarized light scattering spectra of CKN [96], Salol [96], and OTP [97].
These descriptions imply a complete fit of theα-peak, of theβ-spectrum, and of parts of the
microscopic-excitation band.

The status of the tests of spectra forT < Tc is not clear at present mainly for two reasons.
These spectra are modified seriously by activated transport processes which are ignored in
the basic version of MCT; the activated processes are included approximately in the more
complicated extended MCT only. The first problem is that a microscopical quantification of
these activated processes and an evaluation of their effect on the solutions of the extended
equations of motion is not available. The only result known so far is that for sufficiently small
hopping effects equations (4) remain valid with theβ-correlator generalized to a two-parameter
scaling law. The activated processes enter as a single parameterδ which is called the hopping
parameter. At present one can only try fits of data usingδ as an adjustable number. The glassy
dynamics has been analysed within theδ 6= 0 β-relaxation theory for the depolarized light
scattering spectra of CKN and Salol [68], PC [54], and OTP [63], as well as for Monte Carlo
simulation results for a polymer model [35]. The position and the shape of the susceptibility
minimum is influenced sensitively forT < Tc by δ. Therefore a fit ofδ should be made to this
clearly distinguishable dynamical feature and a fit should be judged by the quality of such a
study. This leads to the second problem: so far it has not been possible to measure the spectral
minima forT < Tc. This renders the cited estimate ofδ not compelling, as was emphasized
in reference [68].

The absence of a reliable determination ofδ has implications for a reliable description
of other features of theT < Tc spectra, for example the so-called susceptibility knee. This
feature is present in the master spectrumχ̂+(ω̂) of the β-process in the ideal MCT for the
following reason. The correlatorg+(t̂ ) in equation (5b) describes the crossover from critical
decay fort̂ � 1 to arrest fort̂ � 1, as was discussed above for the hard-sphere-colloid
results in connection with the lower panel of figure 5. This crossover leads to a corresponding
one at some knee frequencyωK ∝ 1/tσ for the spectrum from the regular variation for low
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frequencies,̂χ+(ω̂ � 1) ∝ ω̂, to the critical variation for high frequencies,χ̂+(ω̂ � 1) ∝ ω̂a.
If δ is sufficiently small, the ideal spectrum will not be disturbed too much and the knee
should be present. However, ifδ is so large that theα-decay of the correlator starts for a time
smaller thantσ , the spectral knee will be absent. The depolarized light scattering spectra of
Salol [47] and PC [54] did not exhibit a knee in the GHz window, and therefore the cited
δ 6= 0 fits had to use a sufficiently large hopping parameter. The OTP spectra, measured
in a backward-scattering configuration [63], did not exhibit a knee either. But OTP spectra,
measured in a 90◦-scattering arrangement, did exhibit a knee-like structure and it was reported
to be consistent with the MCT predictions [84]. However, for 90◦-scattering experiments there
appear transverse sound excitations in the spectral range of interest, and it is unclear how these
modify the relaxation spectra to be analysed. The data for CKN were initially found to exhibit
a knee [50]. But it was argued [98] that the depolarized light scattering spectra published so far,
obtained by the tandem Fabry–Pérot spectrometer for the lowest frequencies and intensities,
are invalidated by some parasitic white-noise-background spectrum. Therefore the spectra for
T 6 Tc have to be remeasured and reanalysed before a conclusion on the status ofδ 6= 0 fits
can be drawn. For this reason,T < Tc scaling-law fit results for scattering spectra have not
been reviewed in section 4.

7.4. Associated and covalently bonded liquids

In a dense simple liquid a particle is located in a cage formed by its 11 to 13 nearest neighbours.
MCT aims at a self-consistent treatment of the dynamics for the particle and its cage. Therefore
one might hesitate to apply the theory in a discussion of network-forming liquids which have a
much lower coordination number and where the significance of the cage effect is not so obvious.
However, the general MCT results are universal and they reflect only a topologically stable
singularity in the space of constants describing the coupling of density fluctuations. Therefore
it is not impossible that the universal results are relevant also for the glassy dynamics of complex
liquids, and it makes sense to examine whether or not the data for correlation functions and
spectra show the typical MCT features. Indeed, as mentioned above, the simulation data for a
simple point-charge model of water reproduce the open network structure of this liquid, and
the data for the dynamics can be interpreted consistently within the MCT scenario; the critical
temperatureTc can be identified reasonably well [41,43–46]. A semi-schematic model for the
description of molecular liquids has been introduced, which treats water as a simple liquid and
accounts for the ignored rotational degrees of freedom by renormalizing the mode-coupling
constants with a factor. The latter is fitted such that the critical temperature is reproduced. This
model predicts the critical exponents correctly and describes the wave-vector dependence of
theα-process for the centre-of-mass correlators reasonably well [99]. The simulation work as
well as the analysis of Raman-scattering experiments [42] show that in the currently-accessible
temperature range the critical decay law of water is masked by oscillation dynamics. Therefore
a test of the first-scaling-law predictions is not yet possible. Also, for the other hydrogen-
bonded liquid studied so far, glycerol, the low-frequency spectra due to oscillation dynamics
interfere strongly with the relaxation spectra. But the light scattering spectra exhibit a critical
decay lawφ′′(ω) ∝ 1/ω1−a, a ∼ 0.3, which forT ∼ 230 K extends over the window between
1 and 100 GHz [74]. The neutron scattering work corroborates this finding [100]. A fit of the
data with MCT results is possible, but did not lead to a compelling estimate ofTc [95].

The interactions in a multicomponent Zr-based metallic alloy, whose dynamics was studied
by incoherent neutron spectroscopy, are partly of covalent nature. The correlatorsφq(t) have
been studied for times between about 0.2 ps and 8 ps, and this for the wave-vectors 1.4, 1.6,
1.8, and 2.0 Å−1. The data for temperatures between 1020 and 1200 K could be described with
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high accuracy by theβ-relaxation scaling law, equations (4a), (5a), yieldingλ = 0.77± 0.04
andTc = 875± 6 K [101]. Another system for which covalent bonding is important is
N0.5Li 0.5PO3. The incoherent neutron scattering cross section obeyed the factorization property
for the whole dynamical window studied [102]. It was shown that the spectra between 30 GHz
and 1 THz and temperatures between 539 K and 773 K can be described well by the solutions
of a schematic MCT model [103].

B2O3 is an extensively studied glass-forming system with a network structure due to
covalent bonding. Density correlatorsφq(t) for a fixed wave-vector were measured by photon-
correlation spectroscopy for temperatures between 506 and 543 K [104]. The data for a seven-
decade dynamical window could be described by the MCTβ-relaxation results. They describe
the temperature-independent critical decay, which was detected over a two-decade window.
Also the initial part of theα-process, which exhibits the von Schweidler law over a two-decade
window, is evident in the data. These results indicate a critical temperature below 506 K,
i.e. belowTg ≈ 523 K. Unfortunately, it was not reported whether the scales for aβ-relaxation
scaling-law analysis follow the power-law predictions. Depolarized light scattering spectra
have been analysed for B2O3 for frequencies above about 0.4 GHz. The band of microscopic
excitations influences the spectra down to rather low frequencies. The susceptibility minimum
was described by the interpolation formulaχ ′′int(ω) from section 7.2 [105]. The non-ergodicity
parameters deduced from light scattering data [105] or from neutron scattering spectra [106]
exhibit an anomaly which suggests a washed-out crossover at some critical temperatureTc
between 700 K and 900 K. This value is not consistent with the cited photon-correlation data,
and therefore it is unclear whether MCT can be applied to interpret the data for B2O3.

8. Concluding remarks

The anomalous dynamics of glass-forming liquids has been studied for more than a century
for timescales larger than a nanosecond, i.e. for times exceeding the ones characteristic for
conventional condensed-matter dynamics by at least a factor of 100. However, an under-
standing of glassy dynamics did not result from that work. Therefore it appears obvious
to search for insight into the problem by analysing how the glassy dynamics evolves from
the normal-state-liquid dynamics upon cooling or compressing the system. An additional
motivation for such research was provided by the mode-coupling theory (MCT) for the
evolution of structural relaxation in simple liquids. The specified studies by experiment and by
molecular dynamics simulations require the determination of correlation functions or spectra
within dynamical windows which extend those of conventional condensed-matter physics by
several orders of magnitude, and this became feasible only during the past decade. Indeed, this
modern work uncovered a whole series of previously unexpected features of glassy dynamics.
This article reviews the parts of these new findings which were published during the past seven
years and which were used by the authors for an assessment of the MCT. In the cited papers
one can find more than 300 diagrams confronting data with some MCT prediction. From this
stock of information 24 figures have been reproduced in order to illustrate various facets of
the problem and to show representative examples for the many other comparisons between
experimental results and simulation data with MCT mentioned in this review. This procedure
should give a suitable impression of the present status of the discussion and stimulate the reader
to study the original publications.

The work reviewed in the preceding sections has shown that the universal leading-order
asymptotic MCT results provide a complete semi-quantitative description of the evolution of
structural relaxation within the GHz band for some extensively studied typical glass-forming
systems like the mixed salt CKN [1–3,14,16–18,37,50,67–69,93,96] and the van der Waals
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liquid OTP [4, 5, 15, 60–63, 73, 77, 84, 86, 97]. The structure relates to the distribution of
the particles in space, and neutron scattering is the only technique which can measure this
distribution for short and intermediate distances as well as its changes with increasing time.
Therefore neutron scattering spectroscopy plays a distinguished role in the unfolding of the
story of structural relaxation in the above-mentioned systems. But only the combination with
the other experimental techniques mentioned in this article has been able to compensate for
the shortcoming of neutron scattering spectroscopy, namely small dynamical windows. The
crucial role of the crossover temperatureTc has been established for several systems, but further
work is necessary to specify the limits of MCT as regards a description of the dynamics for
temperatures belowTc. If it were to be possible to extend the accessible dynamical windows,
one could also test MCT predictions which go beyond leading-order asymptotic results.

The microscopical understanding of normal-liquid dynamics owes much to the achieve-
ments of computer simulation studies, and this review makes it evident that this technique
also provided essential information on the glassy dynamics. Theα-process for temperatures
aboveTc has been analysed for several systems and many probing variables. The factorization
property in theβ-regime was demonstrated for several models and correlation functions. The
cited comparisons of simulation results for a Lennard-Jones mixture with first-principles MCT
calculation results provide strong support for the theory. Motivation for further studies of the
range of validity of asymptotic MCT formulae and for extensions of the theory to systems of
non-spherical molecules was provided by the discovery that the simulation results for water
exhibitα-scale coupling for all correlations analysed, while the ones for the cited mixture and
for a model of linear molecules do not. The analysis of simulation data and of experiments
within the concepts provided by MCT identified a challenging problem for future simulation
work: what models exhibit the critical decay as clearly as one knows it to be exhibited by several
conventional systems? One might suspect that the crucial aspect of the problem is the interplay
of the transient dynamics with structural relaxation, and more data on this phenomenon would
guide MCT studies towards a solution.

The hard-sphere system has regularly been used as a paradigm for a simple liquid, and
the experiments on hard-sphere colloids show that it can also serve as the simplest example
of a system exhibiting glassy dynamics. For this system the ideal glass transition in the
sense of MCT appears to be identical with the calorimetric glass transition,ϕc = ϕg. Hence
the experimental and theoretical studies of the colloid are also relevant for establishing an
understanding of the conventional glass transition. The cited work [10,27,32,33,72,76,81,82,
89] suggests that MCT explains the evolution of structural relaxation qualitatively correctly
for packing fractionsϕ below and above the critical valueϕc, and that it provides a first-
principles description of the data on a 15% accuracy level. There are some open questions
whose answers would deepen our understanding of the glass transition problem and sharpen
the assessment of MCT. First, it is unclear how hydrodynamic interactions, which enter the
MCT results on structural relaxation via the timescalet0 only, influence the crossover from the
transient dynamics to the glassy dynamics. Molecular dynamics studies for the hard-sphere
system without hydrodynamic interactions could be very informative in this context. Second,
as a step towards a quantitative understanding of the influence of polydispersity on glassy
dynamics, it would be helpful to analyse a binary mixture of spheres of different diameters.
As a result, one could obtain data to use in testing how MCT can deal with those correlations
which are different from the ones for the total-density fluctuations studied so far. The third
problem is a special limiting case of the mixture problem. MCT predicts that the mean squared
displacement dynamics of the hard-sphere system is different from the dynamics studied so
far for other variables in the sense that leading-orderβ-relaxation results do not describe
quantitatively the solutions of the full MCT equations in the parameter range of interest. Thus
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a quantitative analysis of the mean squared displacement results would provide a new type of
test of MCT.

MCT was constructed as a microscopical approach towards the dynamics of liquids. The
cited comparisons of data for form factors and for exponent parameters with first-principles
calculations done for the hard-sphere system and for the binary Lennard-Jones system show
that this claim has some justification. There are a number of other systems for which detailed
calculations and comparisons with data appear possible, for example charge-stabilized colloids.
However, it is unclear whether first-principles calculations are feasible for the complicated
conventional glass-forming liquids like CKN and OTP. Therefore it is of importance that MCT
provides some general results for the evolution of glassy dynamics. These are based on leading-
order asymptotic expansions near the glass transition singularity. They explain some general
features shared e.g. by the molten salt CKN and a hard-sphere-colloidal suspension, and they
justify the characterization of the anomalous dynamics studied by the same phrase ‘structural
relaxation’. But one faces a severe problem with the applicability of the above-mentioned
general asymptotic results: there is noa priori quantitative specification of their range of
validity. Within the ideal MCT the range of validity of the general formulae discussed on
the preceding pages can be determined and the qualitative trends of the deviations from these
leading-order results can be specified by calculating the leading corrections to the leading-order
asymptotic results. This programme has been carried out recently for simple systems, and the
results have been discussed in detail for the hard-sphere model [107, 108]. There are some
general findings. The range of validity of theα-scaling law is bigger than that of theβ-scaling
law since corrections to the former are proportional toε = (T − Tc)/Tc while those to the
latter are proportional to

√|ε|. The dynamical window for theβ-scaling law is larger in the
log t than in the logω domain. There are relations between the corrections for small rescaled
times t̂ = t/tσ and the ones for largêt , etc. Future work will show whether these findings
are helpful for tests of MCT. The range of validity of some asymptotic law depends not only
on the law considered but also on the variableA whose correlator or spectrum is studied. For
example, for a wave-vector near the structure factor peak position, the range of validity of the
t−a-law for the decay towards the plateau is much smaller than that for a wave-vector near
the first minimum of the structure factor. Von Schweidler’s law describes a reasonable part of
theα-process of the mean squared displacement, while the critical decay law is not detectable
for this quantity within the range of parameters of interest in present simulation studies. The
corrections to the asymptotic laws for the non-Gaussian parameter are so big that the two-step-
relaxation scenario does not show up in the numerical solutions for reasonable values of|ε|. To
decide on the quantitative implications of the corrections, one has to evaluate a set ofA-specific
correction amplitudes in addition to two constantsξ andη. The latter are the analogues of
λ and they fix the master functions determining the corrections to the leading-order results.
But the evaluation of these constants and amplitudes requires the knowledge of the mode-
coupling functional for the system under discussion, and such knowledge is not available for
complicated systems. In addition to the above-described problems, there are the problems
of the crossover from the transient to structural relaxation and the crossover from the cage-
effect-dominated dynamics to activated transport. These crossovers imply deviations from the
formulae discussed in this review, which are not sufficiently well understood. Because of the
problems indicated, it would be premature to formulate a conclusion as to whether, e.g., the
discrepancies between the values ofTc, reported by different authors for PC, or the deviations
of the spectra in theβ-relaxation window, found by dielectric-loss spectroscopy and light
scattering, are due to failures of MCT or due to the corrections to leading-order results.

I hope that this review shows that the recent studies of an ancient problem of condensed-
matter physics by experiment, simulation, and theory have been worthwhile, and that extensions



Recent tests of the mode-coupling theory for glassy dynamics A43

and improvements to these studies are rewarding.
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[12] Götze W and Vujǐcić G M 1989Z. Phys.B 76175
[13] Frick B, Farago B and Richter D 1990Phys. Rev. Lett.642921
[14] Li G, Du W M, Hernandez J and Cummins H Z 1993Phys. Rev.E 481192
[15] Tölle A, Schober H, Wuttke J and Fujara F 1997Phys. Rev.E 56809
[16] Yang Y and Nelson K A 1996J. Chem. Phys.1045429
[17] Kartini E, Collins M F, Collier B, Mezei F and Svensson E C 1996Phys. Rev.B 546292
[18] Pimenov A, Lunkenheimer P, Rall H, Kohlhaas R, Loidl A and Böhmer R 1996Phys. Rev.E 54676
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